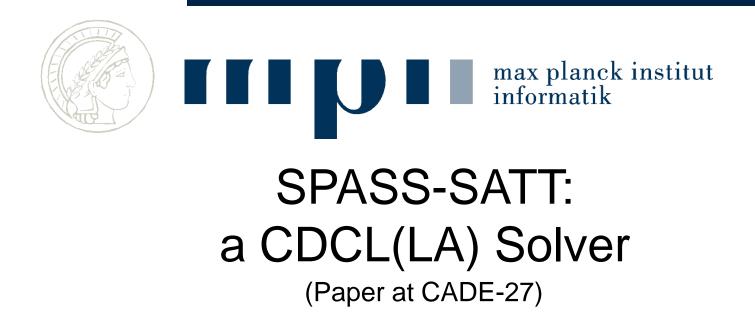


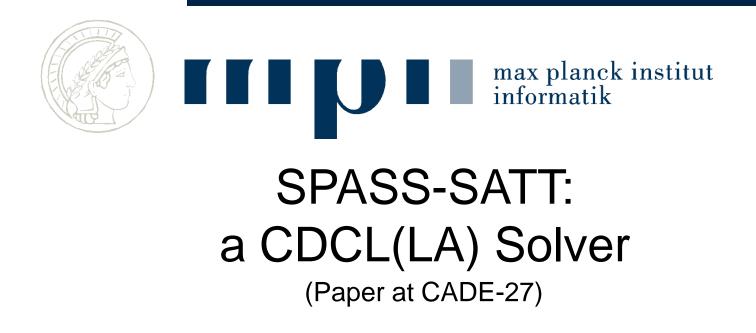
Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach



Translation: fun (=SPASS) sated (=SATT)

Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach

> **SIC** Saarland Informatics Campus



Translation: fun (=SPASS) sated (=SATT) being sick/tired of having fun...

Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach

> **SIC** Saarland Informatics Campus

Signature:
$$\Sigma_{LA} := \{+, -, <, \le, \ge, >, 0, 1, 2, ...\}$$

2/25

Signature:
$$\Sigma_{LA} := \{+, -, <, \le, \ge, >, 0, 1, 2, ...\}$$

Multiplication only as syntactic sugar! E.g.: $3 \cdot x \mapsto x + x + x$

Signature:
$$\Sigma_{LA} := \{+, -, <, \le, \ge, >, 0, 1, 2, ...\}$$

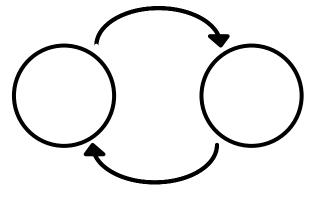
Multiplication only as syntactic sugar! E.g.: $3 \cdot x \mapsto x + x + x$

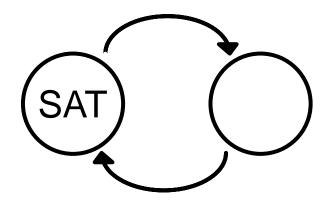
max planck institut informatik

Goal: Quantifier-Free Linear Rational Arithmetic (QF_LRA) \Rightarrow rational solution, i.e., $x, y, ... \in \mathbb{Q}$

Quantifier-Free Linear Integer Arithmetic (QF_LIA) \Rightarrow integer solution, i.e., $x, y, ... \in \mathbb{Z}$

2/25

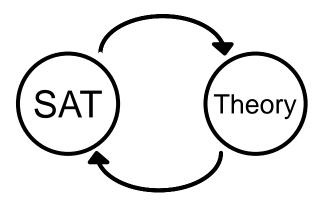




CDCL solver:

CDCL = conflict-driven clause-learning

Decision procedure for propositional CNF formulas



CDCL solver:

CDCL = conflict-driven clause-learning Decision procedure for propositional CNF formulas

Theory solver: Decision procedure for conjunctions of theory atoms e.g. Simplex for QF_LRA & Branch-and-Bound for QF_LIA

SMT-COMP 2018

QF_LIA (Main Track)

QF_LIA = quantifier-free linear integer arithmetic Benchmarks: 6947 Time limit: 1200s

CPU time Solved Solved Solver Score Score SPASS-SATT 6587.626 6744 72.048 6221.467 Ctrl-Ergo 156.086 6259 MathSATⁿ 6135.114 164.626 6528 SMTInterpol 5915.623 204.123 6286 CVC4 194.986 5891.019 6357 Yices 2.6.0 5867.976 209.452 6232 z3-4.7.1ⁿ 5733.374 224.539 6195 SMTRAT-Rat 4049.914 515.394 3112 3155.162 295.434 2734 veriT

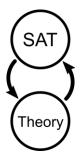
QF_LRA (Main Track)

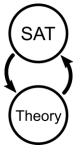
QF_LRA = quantifier-free linear rational arithmetic Benchmarks: 1649

Time limit: 1200s

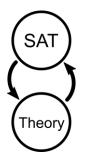
Solver	Solved Score	CPU time Score	Solved
CVC4	1586.833	69.006	1566
SPASS-SATT	1586.396	64.292	1590
Yices 2.6.0	1583.186	63.901	1567
veriT	1568.212	79.840	1527
SMTInterpol	1548.476	102.257	1521
MathSAT ⁿ	1536.458	107.673	1461
z3-4.7.1 ⁿ	1527.249	113.154	1435
opensmt2	1498.663	131.674	1329
Ctrl-Ergo	1450.082	172.097	1354
SMTRAT-Rat	1297.891	275.918	984
SMTRAT-MCSAT	1090.526	409.015	711

Saarland
 Informatics Campus



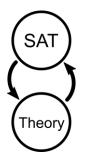


Theory solver extensions:



Theory solver extensions:

Data-structure improvements:



Theory solver extensions:

Data-structure improvements:

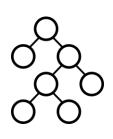
- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

SAT

Theory

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]



Data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Preprocessing:

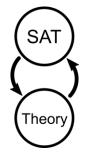
- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

max planck institut

6/25

rmatics Campus

[...] invented by our team [...] invented & published by someone else [...] never published but implemented

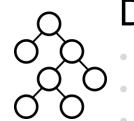


SAT and theory interaction:

- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]



OC

Data-structure improvements:

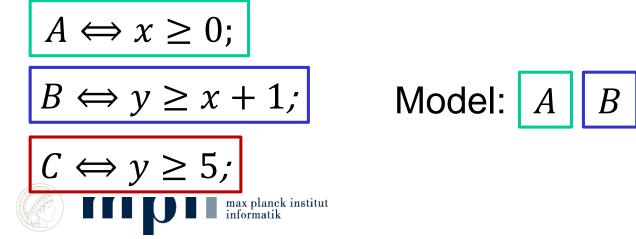
- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Preprocessing:

max planck institut

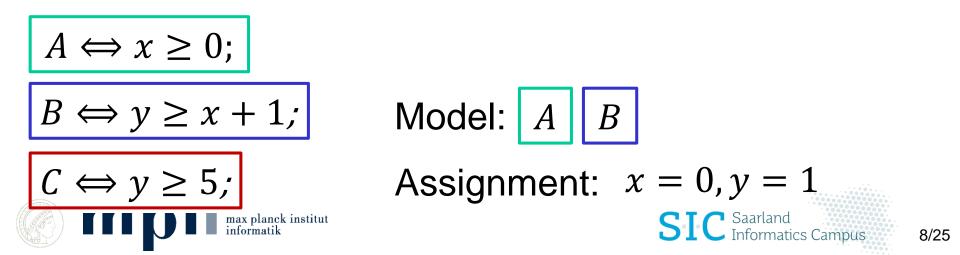
- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$



How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)



How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model

$$A \Leftrightarrow x \ge 0;$$
 $B \Leftrightarrow y \ge x + 1;$
 Model: A
 $C \Leftrightarrow y \ge 5;$
 Model: A
 M
 B

 Assignment: $x = 0, y = 1$

 SIC
 Sarland

 Sic
 Sarland

 Sic
 Sarland

 Model
 Sic

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model (Why? Might reduce time spent on theory checking)

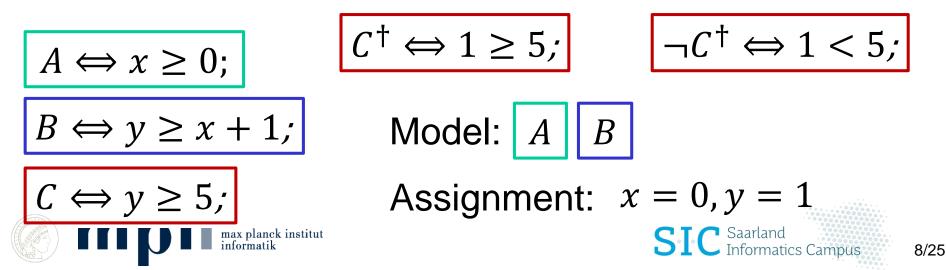
$$A \Leftrightarrow x \ge 0;$$
 $B \Leftrightarrow y \ge x + 1;$
 $C \Leftrightarrow y \ge 5;$

 Model:
 A
 B
 $A \Leftrightarrow y \ge 5;$
 $A \otimes y \ge 5;$

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)

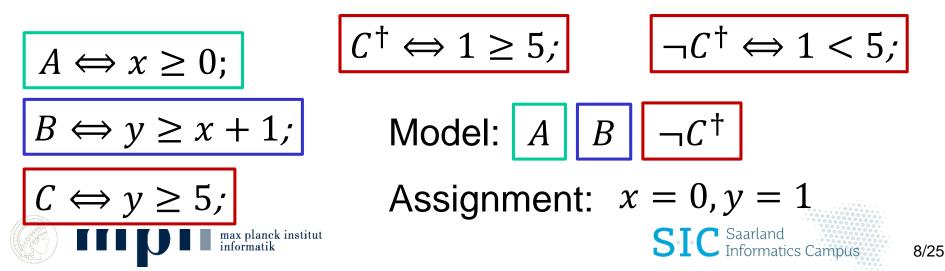
Goal: assignment should stay solution for model (Why? Might reduce time spent on theory checking)



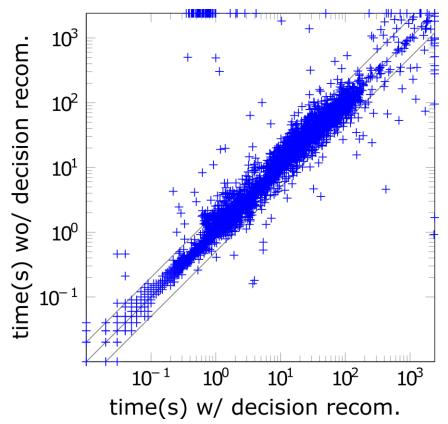
How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model (Why? Might reduce time spent on theory checking)

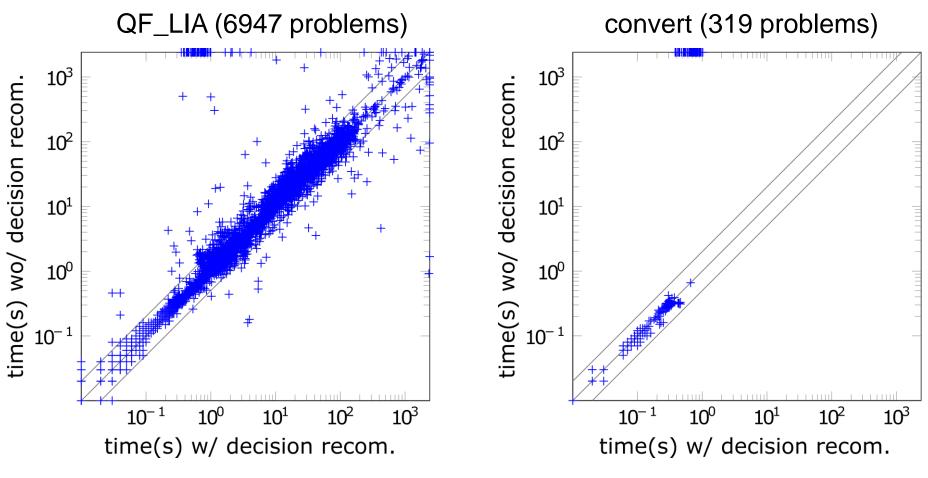


QF_LIA (6947 problems)



additional instances: 129 twice as fast/slow: 389/58

informatik



additional instances: 129 twice as fast/slow: 389/58

max planck institut

additional instances: 116

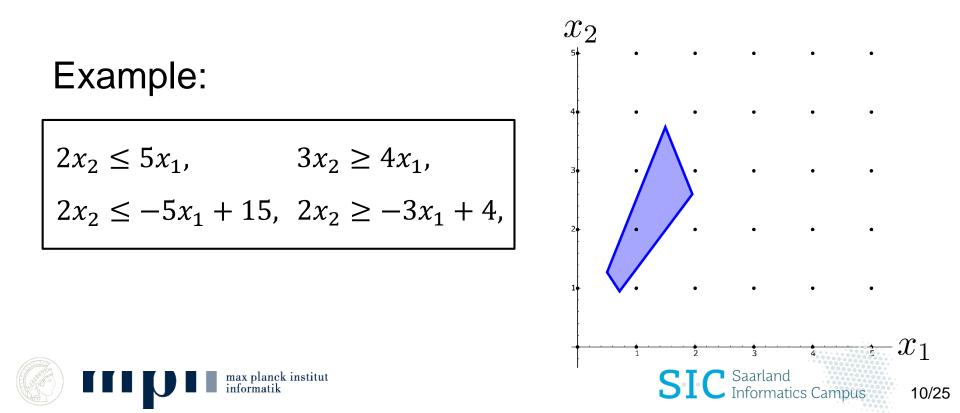
Saarland

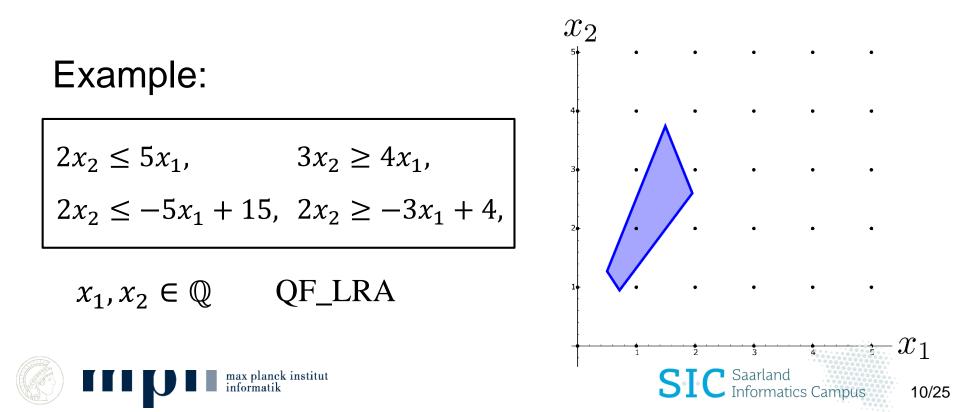
Informatics Campus

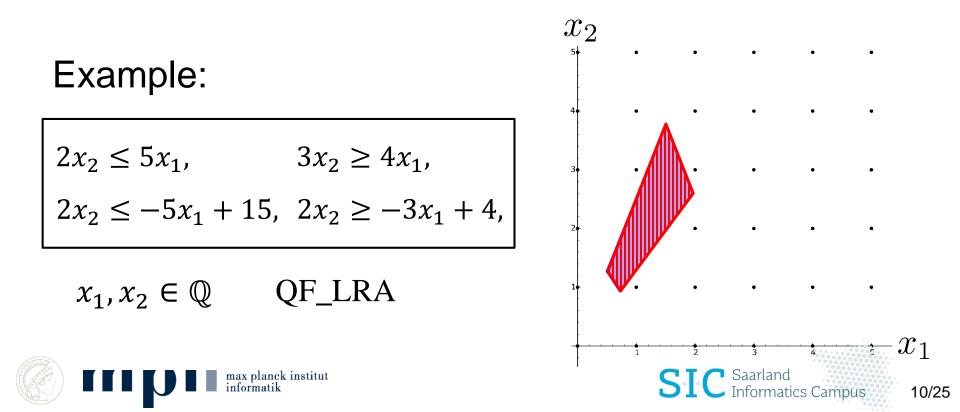
Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$ Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

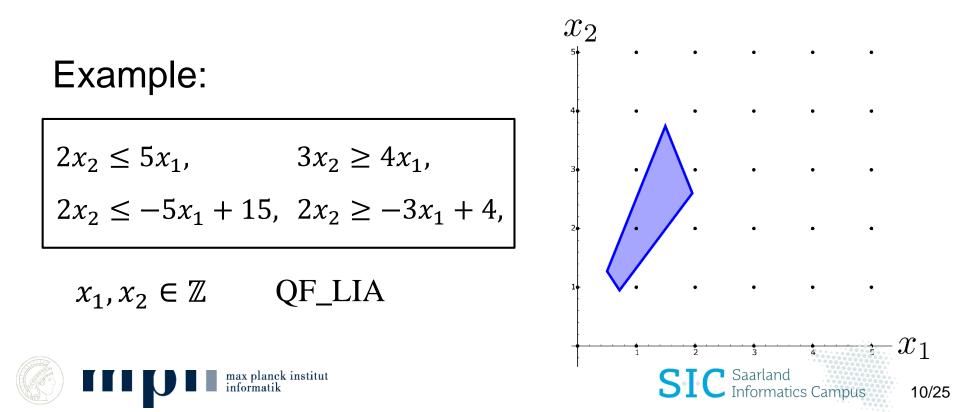
Example:

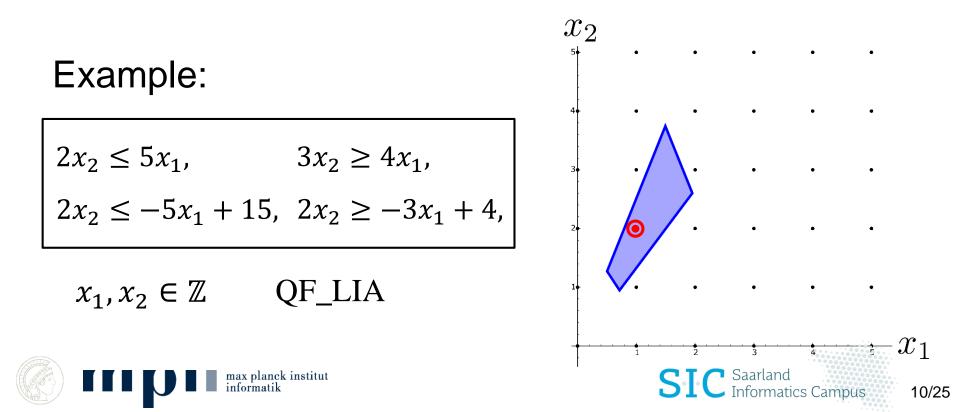
 $2x_2 \le 5x_1, \qquad 3x_2 \ge 4x_1, \\ 2x_2 \le -5x_1 + 15, \ 2x_2 \ge -3x_1 + 4,$

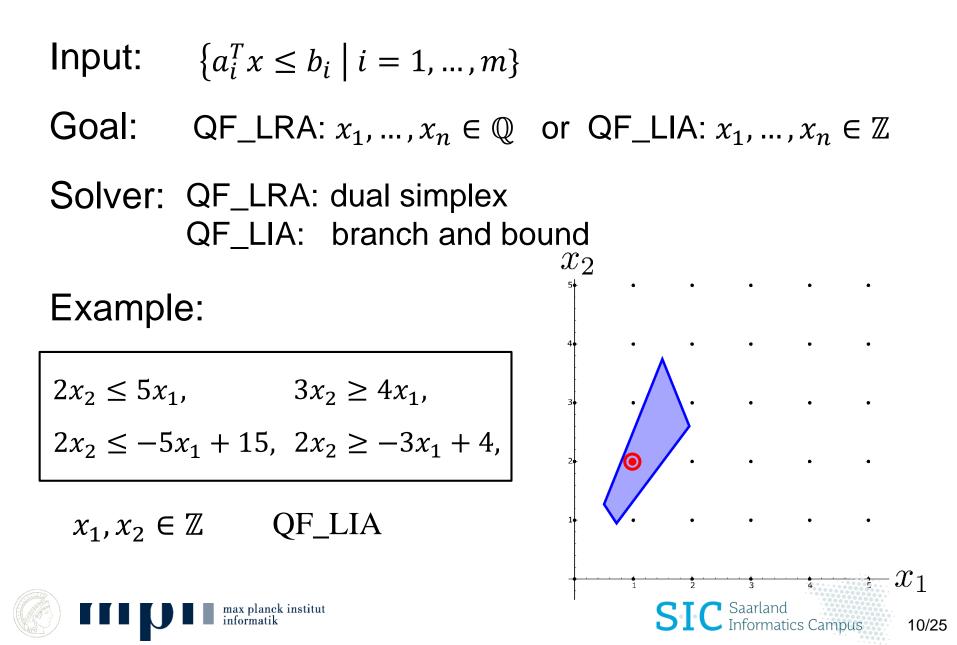


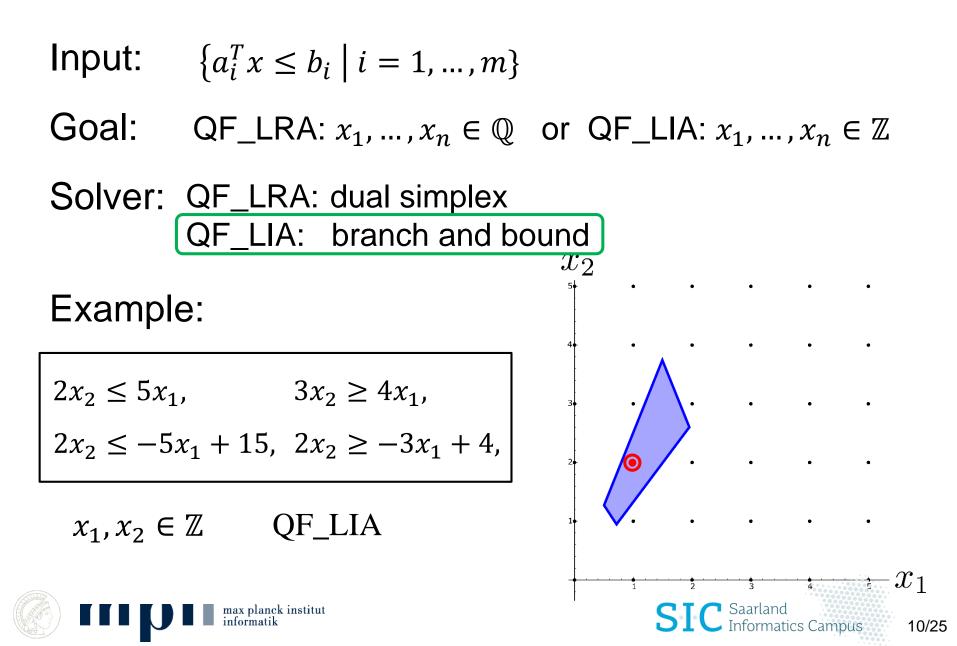




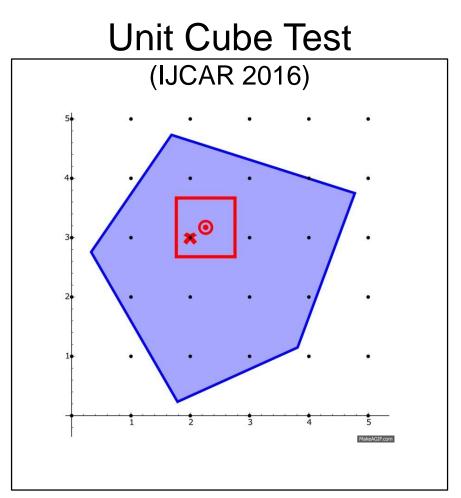








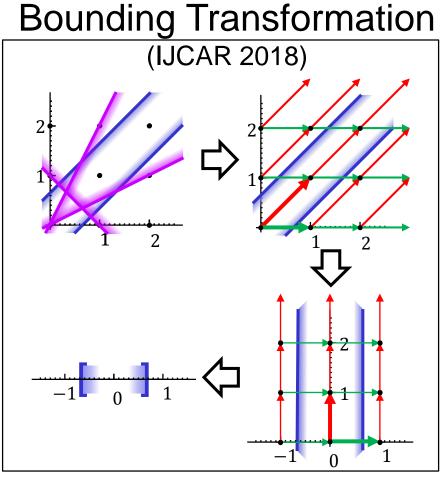
Theory Solver Extensions



for absolutely unbounded problems

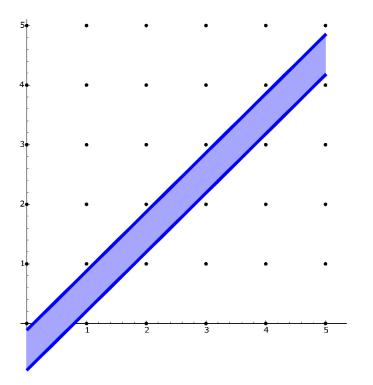
max planck institut

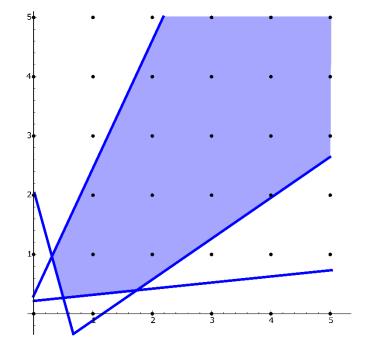
informatik

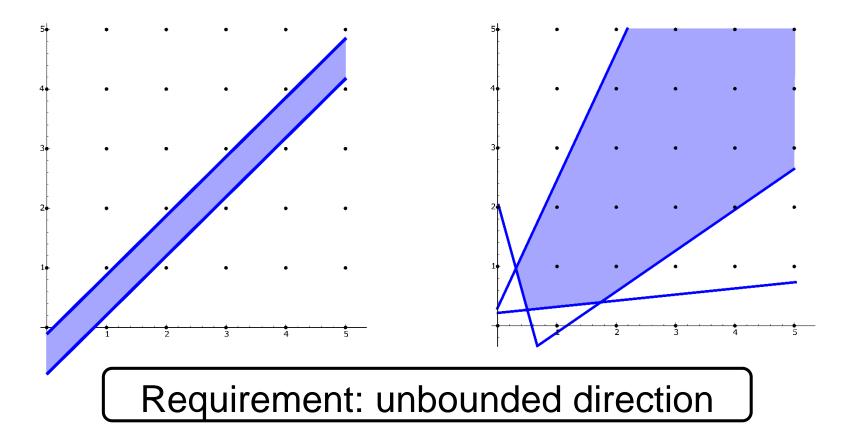


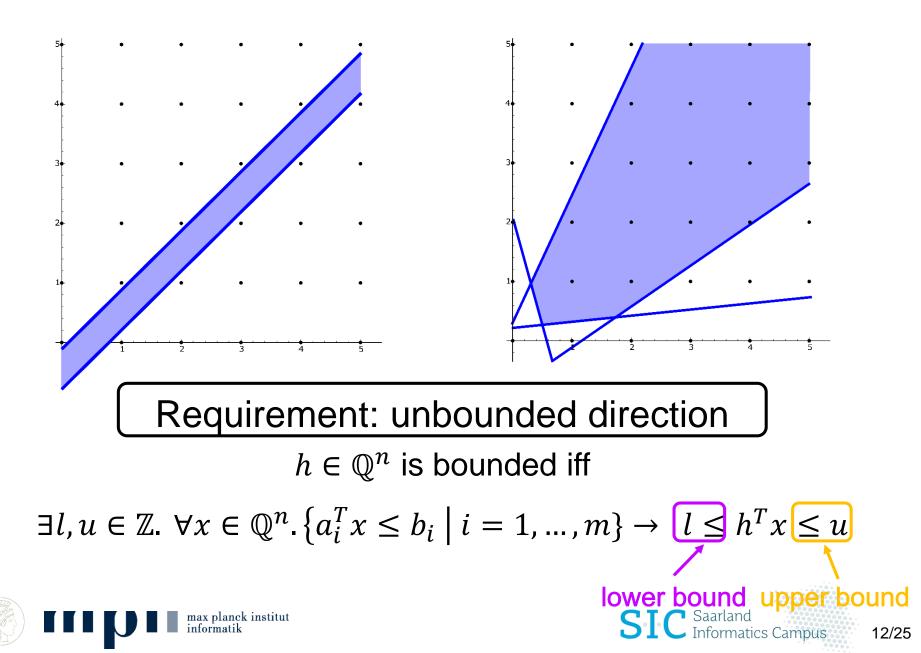
for partially unbounded problems

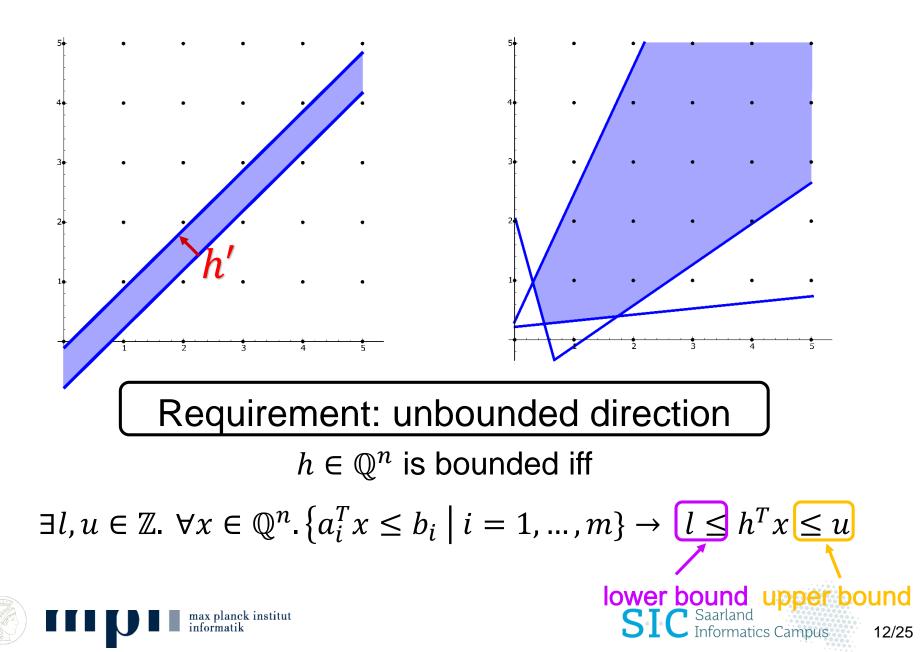
Saarland Informatics Campus

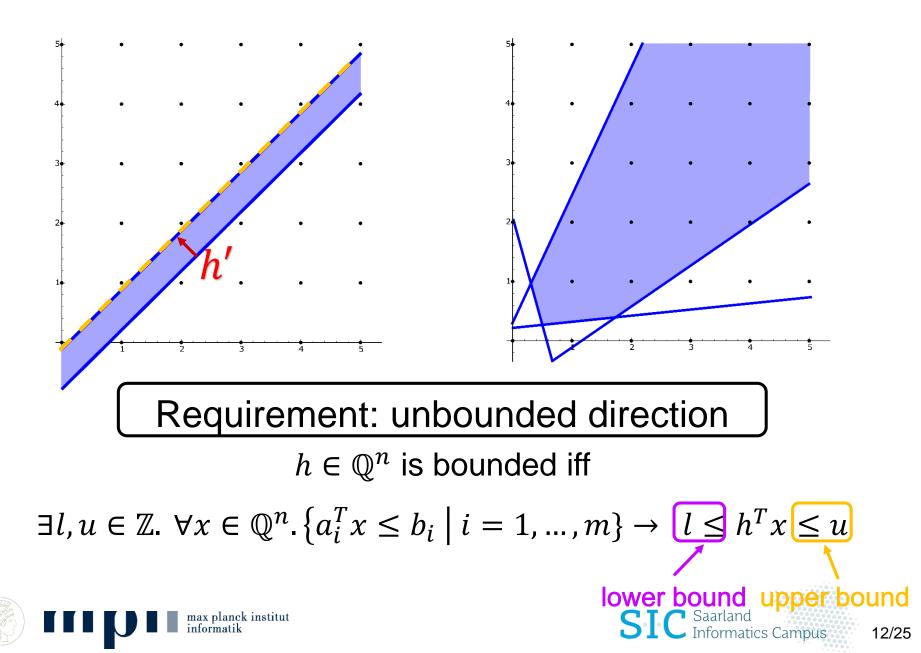


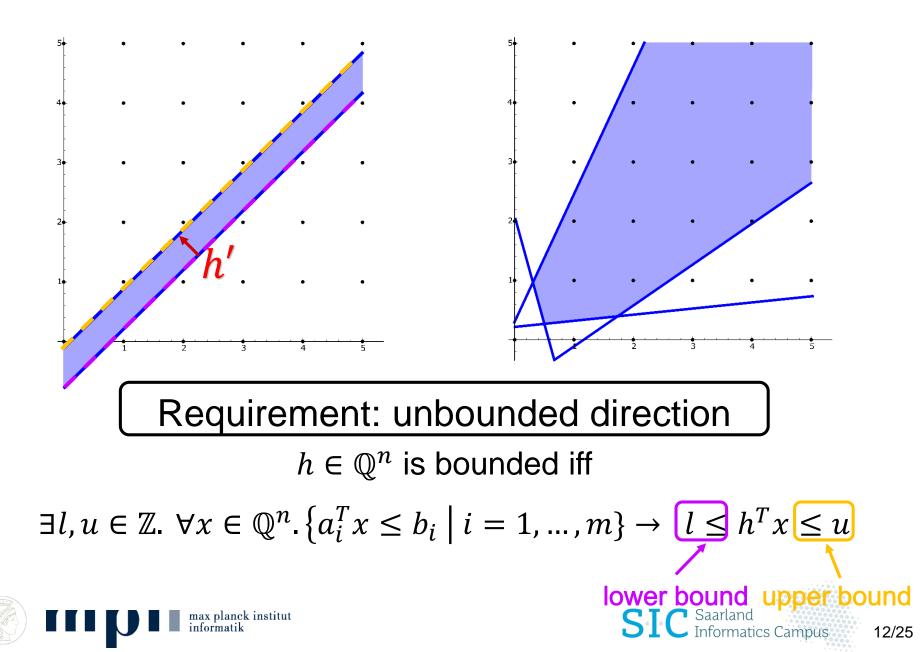


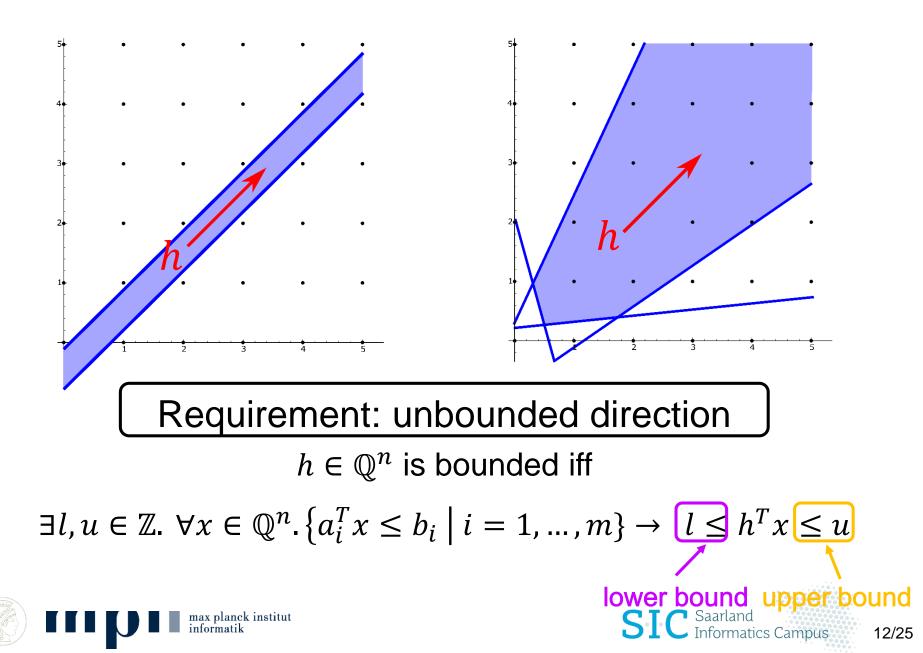


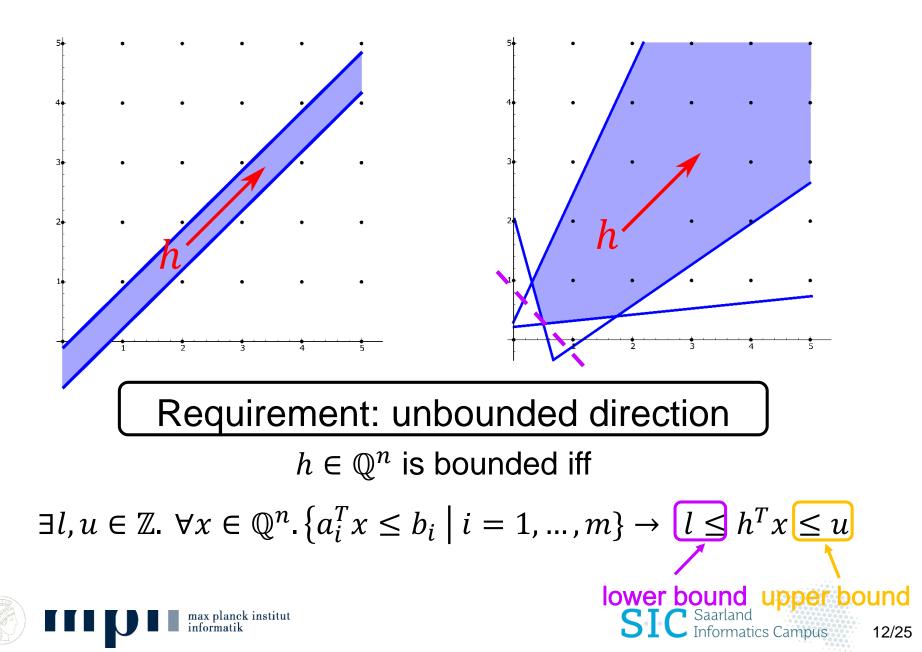


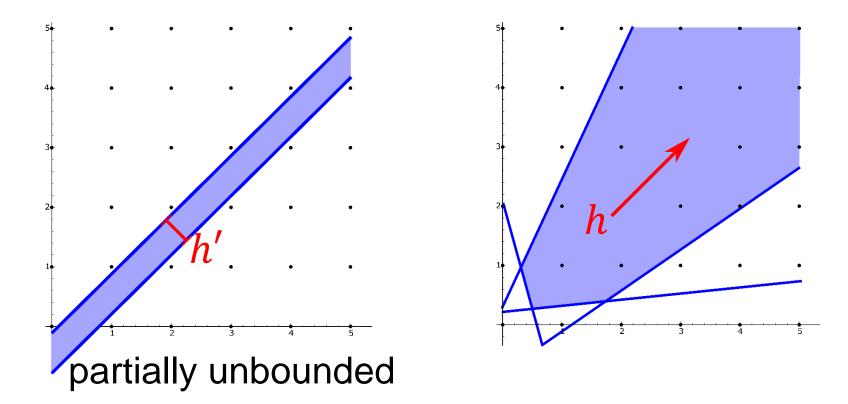




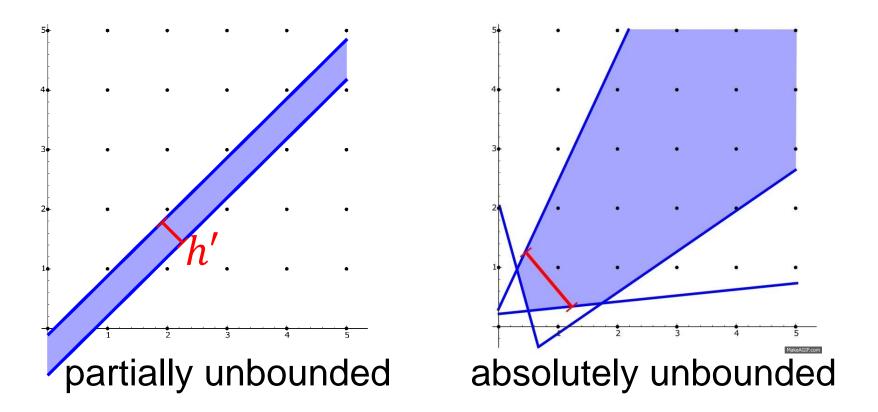




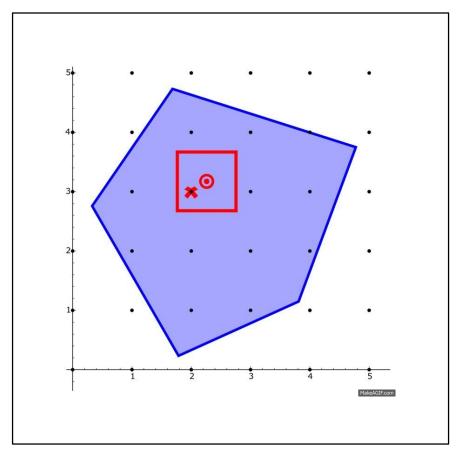




partially unbounded: both bounded and unbounded directions

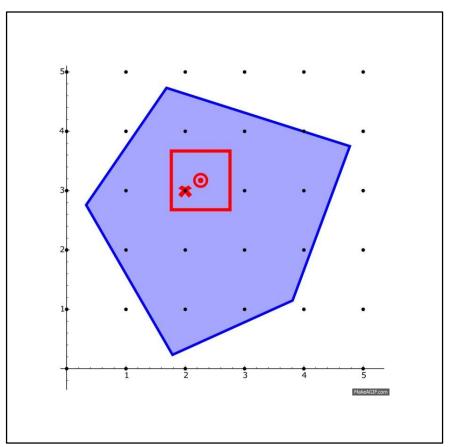


absolutely unbounded: only unbounded directions



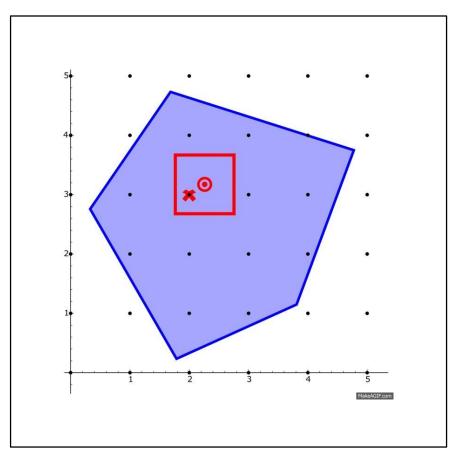
for absolutely unbounded problems

max planck institut informatik



for absolutely unbounded problems

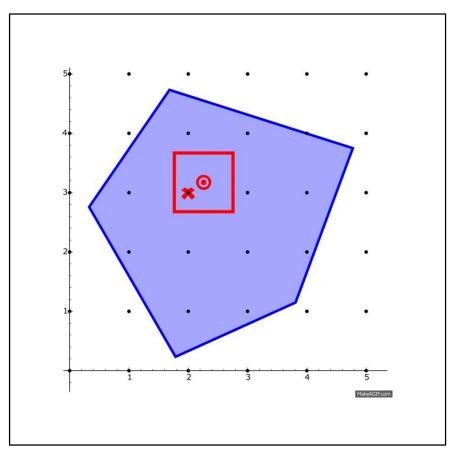
 unit cube guarantees integer solution



- unit cube guarantees integer solution
- computable in polynomial time

for absolutely unbounded problems

max planck institut

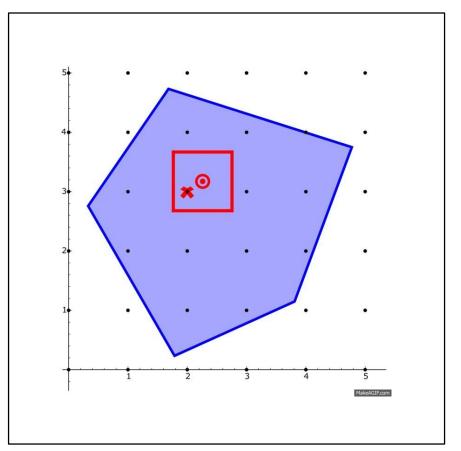


for absolutely unbounded problems

max planck institut

 unit cube guarantees integer solution

- computable in polynomial time
- incremental

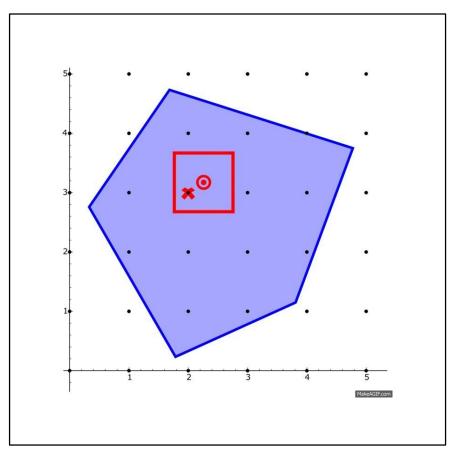


for absolutely unbounded problems

max planck institut

 unit cube guarantees integer solution

- computable in polynomial time
- incremental
- not complete in general

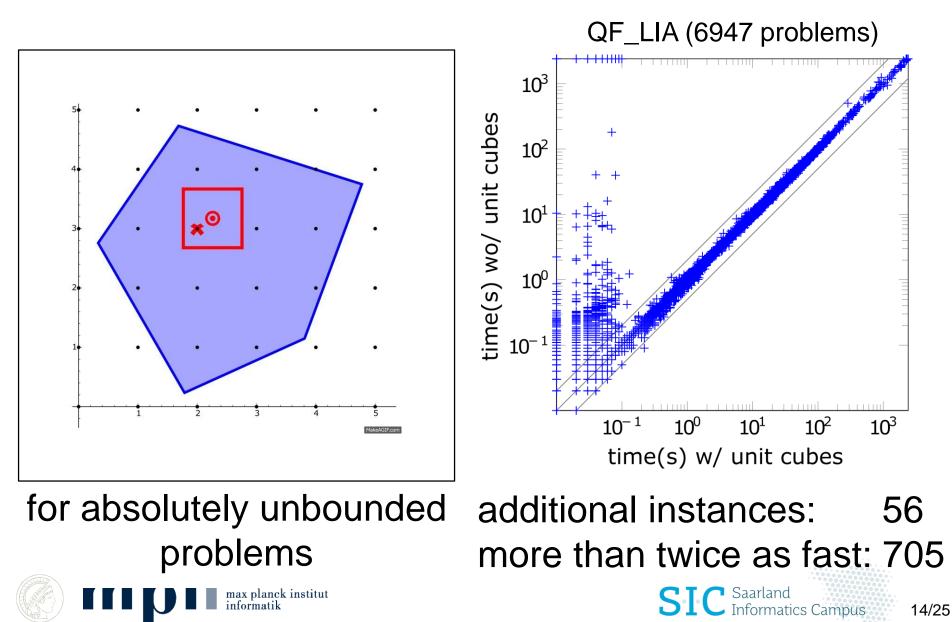


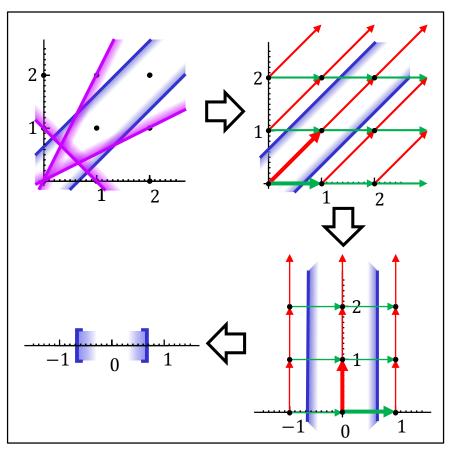
for absolutely unbounded problems

max planck institut

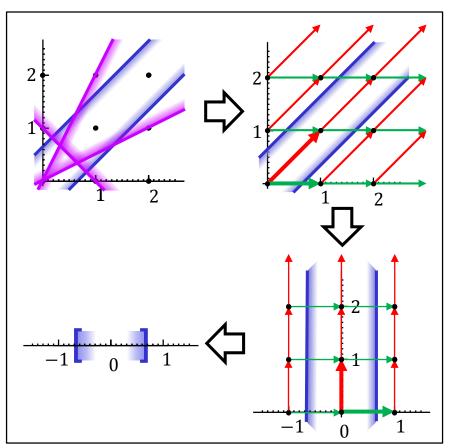
- unit cube guarantees integer solution
- computable in polynomial time
- incremental
- not complete in general
- always succeeds on abs. unbd. problems

Results: Unit Cube Test (IJCAR 2016)





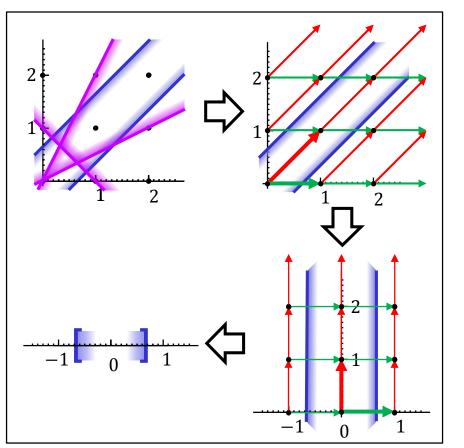
for partially unbounded problems



 transforms unbounded into bounded problems

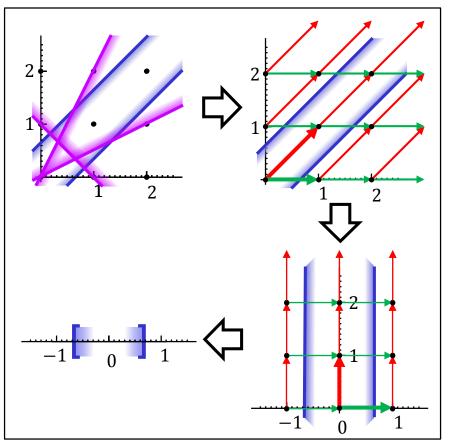
for partially unbounded problems

max planck institut



- transforms unbounded into bounded problems
- computable in
 polynomial time

for partially unbounded problems

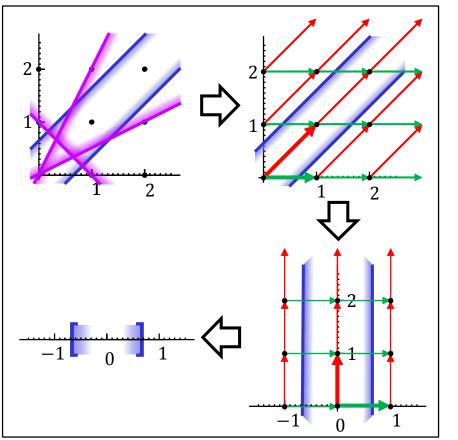


for partially unbounded problems

max planck institut

 transforms unbounded into bounded problems

- computable in polynomial time
- solution & conflict conversion (polynomial time)



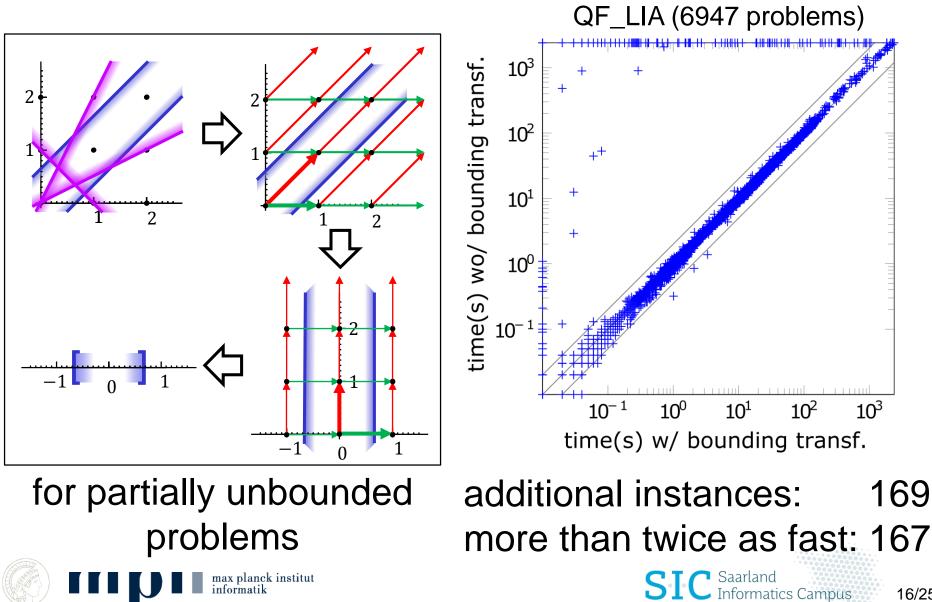
for partially unbounded problems

max planck institut

 transforms unbounded into bounded problems

- computable in polynomial time
- solution & conflict conversion (polynomial time)
- incremental

Results: Bounding Transformation (IJCAR 2018)



16/25

Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

time(s) wo/ preprocessing

 10^{-1}

 10^{-1}

 10^{0}

 10^{1}

time(s) w/ preprocessing

max planck institut

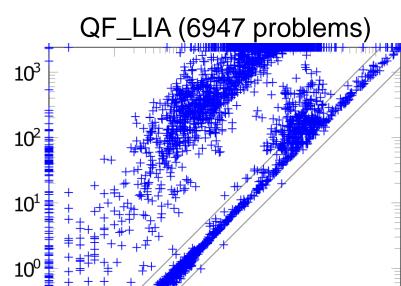
Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]

10²

10³

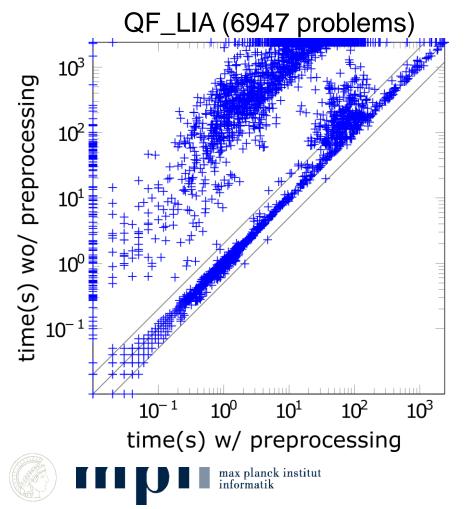
• small CNF transformation [Weidenbach01]



additional instances:1776

Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]



additional instances:1776

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

20/25

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

UNSAT

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$x = 3 \cdot k$$
 for $k \in \mathbb{Z}$ $0 \equiv_9 3 \cdot (3 \cdot k)$

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

 $x = 3 \cdot k \qquad \text{for } k \in \mathbb{Z} \qquad 0 \equiv_9 3 \cdot (3 \cdot k)$ $x = 3 \cdot k + 1 \quad \text{for } k \in \mathbb{Z} \qquad 3 \equiv_9 3 \cdot (3 \cdot k + 1)$

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

Informatics Campus

20/25

UNSAT

Proof by case distinction:

 $x = 3 \cdot k \quad \text{for } k \in \mathbb{Z} \quad 0 \equiv_9 3 \cdot (3 \cdot k)$ $x = 3 \cdot k + 1 \quad \text{for } k \in \mathbb{Z} \quad 3 \equiv_9 3 \cdot (3 \cdot k + 1)$ $x = 3 \cdot k + 2 \quad \text{for } k \in \mathbb{Z} \quad 6 \equiv_9 3 \cdot (3 \cdot k + 2)$

Modular Arithmetic via If-Then-Else

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

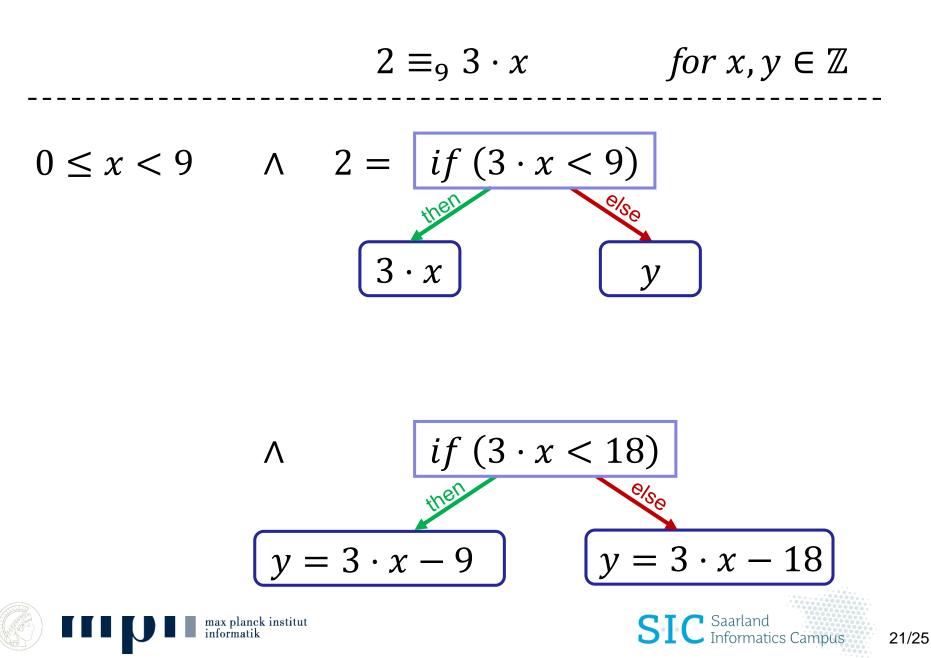
Modular Arithmetic via If-Then-Else

$$2 \equiv_{9} 3 \cdot x \qquad \text{for } x \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \qquad 2 = if (3 \cdot x < 9)$$

$$3 \cdot x \qquad if (3 \cdot x < 18)$$

$$3 \cdot x - 9 \qquad 3 \cdot x - 18$$



$$2 \equiv_9 3 \cdot x \qquad \text{for } x, y \in \mathbb{Z}$$

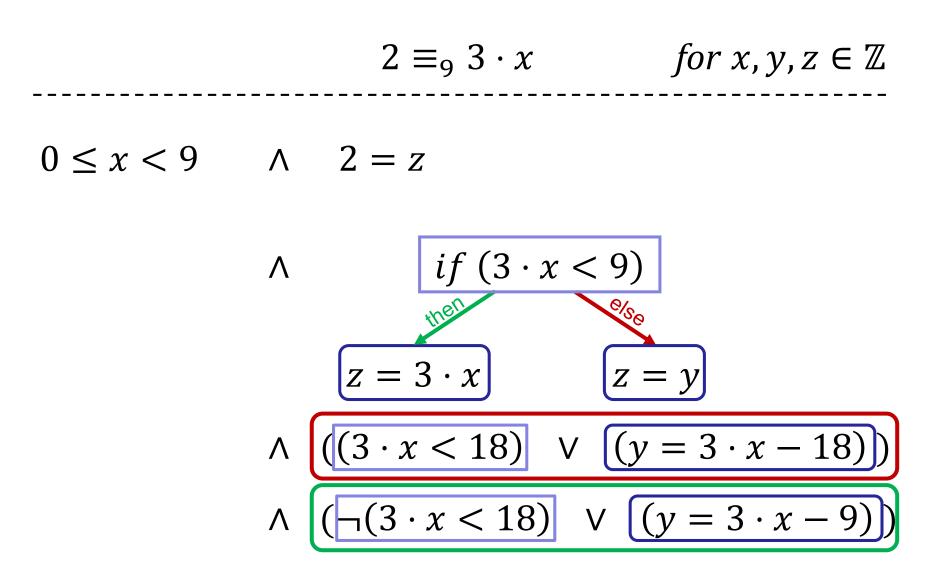
$$0 \le x < 9 \qquad \land \qquad 2 = if (3 \cdot x < 9)$$

$$3 \cdot x \qquad y$$

$$\land ((3 \cdot x < 18)) \lor (y = 3 \cdot x - 18)) \\ \land (\neg (3 \cdot x < 18)) \lor (y = 3 \cdot x - 9))$$

SIC Saarland

Informatics Campus



Saarland

Informatics Campus

$$2 \equiv_9 3 \cdot x \qquad for \ x, y, z \in \mathbb{Z}$$
$$0 \le x < 9 \qquad \land \qquad 2 = z$$

$$\wedge ((3 \cdot x < 9) \lor (z = 3 \cdot x))$$

$$\wedge (\neg (3 \cdot x < 9) \lor (z = y))$$

$$\wedge ((3 \cdot x < 18) \lor (y = 3 \cdot x - 18))$$

$$\wedge (\neg (3 \cdot x < 18) \lor (y = 3 \cdot x - 9))$$

SIC Saarland Informatics Campus

$$2 \equiv_{9} 3 \cdot x \qquad for \ x, y, z \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \qquad 2 = z \qquad \begin{array}{c} \text{two new variables} \\ \text{suboptimally connected} \\ \land ((3 \cdot x < 9) \lor (z = 3 \cdot x))) \\ \land (\neg (3 \cdot x < 9) \lor (z = y))) \\ \land ((3 \cdot x < 18) \lor (y = 3 \cdot x - 18))) \\ \land (\neg (3 \cdot x < 18) \lor (y = 3 \cdot x - 9)) \end{array}$$

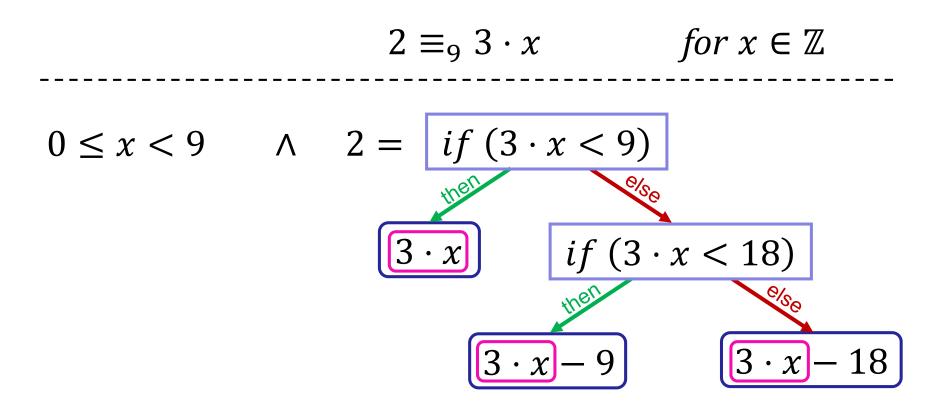
SIC Saarland Informatics Campus

$$2 \equiv_{9} 3 \cdot x \qquad \text{for } x \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \qquad 2 = if (3 \cdot x < 9)$$

$$3 \cdot x \qquad if (3 \cdot x < 18)$$

$$3 \cdot x - 9 \qquad 3 \cdot x - 18$$



All share the monomial $3 \cdot x$!

$$2 \equiv_{9} 3 \cdot x \qquad \text{for } x \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \qquad 2 = 3 \cdot x + if (3 \cdot x < 9)$$

$$0 \qquad if (3 \cdot x < 18)$$

$$-9 \qquad -18$$

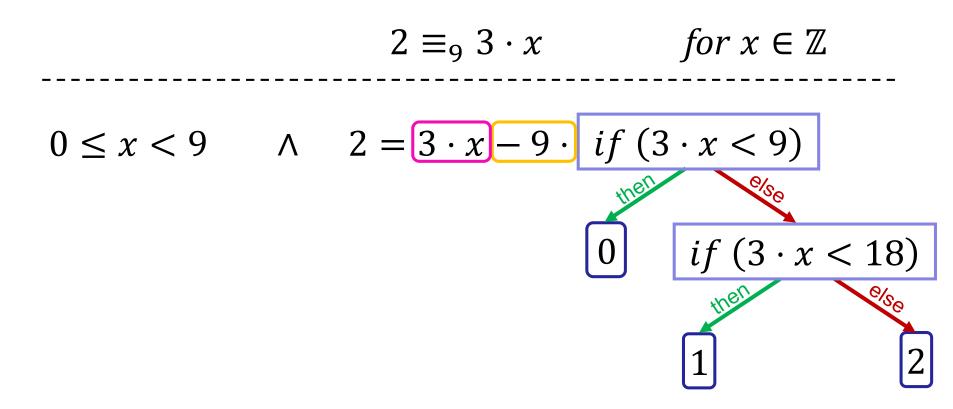
$$2 \equiv_{9} 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \qquad 2 = 3 \cdot x + if \ (3 \cdot x < 9)$$

$$if \ (3 \cdot x < 18)$$

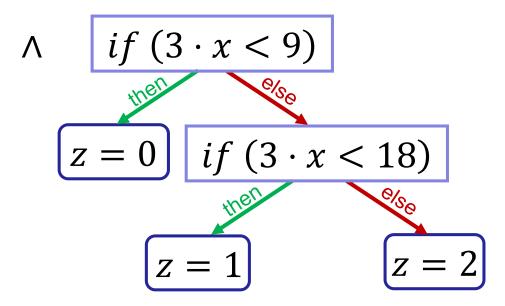
$$-9$$

All divisible by -9!



If-Then-Else: Bounding

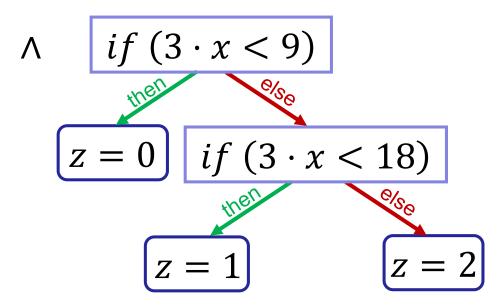
 $2 \equiv_9 3 \cdot x \qquad for \ x, z \in \mathbb{Z}$ $0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x - 9 \cdot z$



IC Saarland Informatics Campus

If-Then-Else: Bounding

 $2 \equiv_9 3 \cdot x \qquad for \ x, z \in \mathbb{Z}$ $0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x - 9 \cdot z \qquad \land \qquad 0 \le z \le 2$



Saarland

Informatics Campus

If-Then-Else: Preprocessing

$$2 \equiv_9 3 \cdot x \qquad for \ x, z \in \mathbb{Z}$$
$$0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x - 9 \cdot z \qquad \land \qquad 0 \le z \le 2$$

If-Then-Else: Preprocessing

$$2 \equiv_9 3 \cdot x \qquad for \ x, z \in \mathbb{Z}$$
$$0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x - 9 \cdot z \qquad \land \qquad 0 \le z \le 2$$

If-Then-Else: Preprocessing $2 \equiv_9 3 \cdot x$ for $x, z \in \mathbb{Z}$ $0 \le x < 9$ \land $2 \le 3 \cdot x - 9 \cdot z$ \land $0 \le z \le 2$ $\land \quad 2 \ge 3 \cdot x - 9 \cdot z$ $\wedge (\neg (3 \cdot x < 9) \lor z = 0)$ $\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$ $\wedge (\neg (3 \cdot x < 18) \lor z = 2)$

C Saarland Informatics Campus

If-Then-Else: Preprocessing $2 \equiv_9 3 \cdot x$ for $x, z \in \mathbb{Z}$ $0 \le x < 9 \qquad \wedge \quad \frac{2}{3} \le 1 \cdot x - 3 \cdot z \qquad \wedge \quad 0 \le z \le 2$ $\wedge \quad \frac{2}{3} \ge 1 \cdot x - 3 \cdot z$ $\wedge (\neg (3 \cdot x < 9) \lor z = 0)$ $\wedge ((3 \cdot x < 9) \vee \neg (3 \cdot x < 18) \vee z = 1)$ $\wedge (\neg (3 \cdot x < 18) \lor z = 2)$ C Saarland Informatics Campus max planck institut

informatik

If-Then-Else: Preprocessing

$$2 \equiv_{9} 3 \cdot x \qquad \text{for } x, z \in \mathbb{Z}$$

$$0 \leq x < 9 \qquad \land \left[\frac{2}{3}\right] \leq 1 \cdot x - 3 \cdot z \qquad \land \quad 0 \leq z \leq 2$$

$$\land \left[\frac{2}{3}\right] \geq 1 \cdot x - 3 \cdot z \qquad \land \quad 0 \leq z \leq 2$$

$$\land (\neg (3 \cdot x < 9) \lor z = 0) \qquad \land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1) \qquad \land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

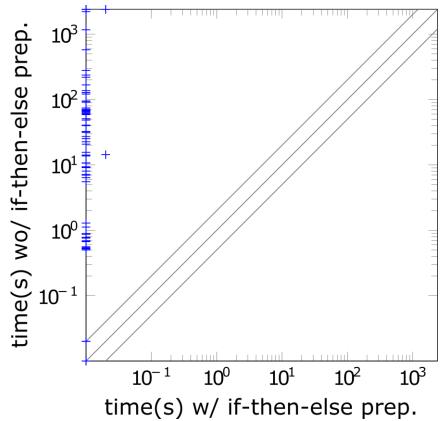
informatik

If-Then-Else: Preprocessing $2 \equiv_9 3 \cdot x$ for $x, z \in \mathbb{Z}$ $0 \le x < 9$ \land $1 \le 1 \cdot x - 3 \cdot z$ \land $0 \le z \le 2$ $\land \quad 0 \ge 1 \cdot x - 3 \cdot z$ $\wedge (\neg (3 \cdot x < 9) \lor z = 0)$ $\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$ $\wedge (\neg (3 \cdot x < 18) \lor z = 2)$ C Saarland Informatics Campus

max planck institut informatik

If-Then-Else: Preprocessing $2 \equiv_9 3 \cdot x$ for $x, z \in \mathbb{Z}$ $0 \le x < 9 \qquad (\land \quad 1 \le 1 \cdot x - 3 \cdot z \qquad \land \quad 0 \le z \le 2$ $\land \quad 0 \ge 1 \cdot x - 3 \cdot z \qquad \downarrow 1 \le 0$ $\wedge (\neg (3 \cdot x < 9) \lor z = 0)$ \land ((3 · x < 9) $\lor \neg$ (3 · x < 18) $\lor z = 1$) $\wedge (\neg (3 \cdot x < 18) \lor z = 2)$ Saarland Informatics Campus

If-Then-Else: Preprocessing

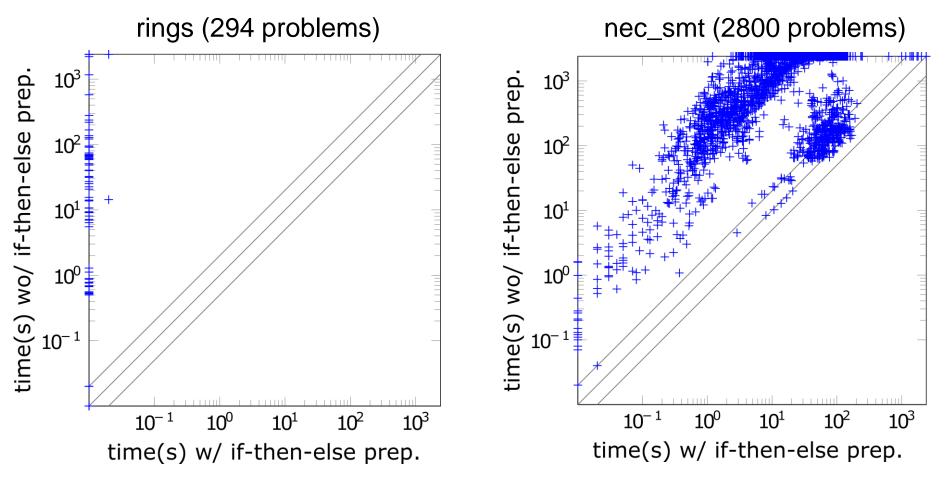


additional instances:157

Techniques: shared monomial lifting, ite bounding, (ite reconstruction)

max planck institut

If-Then-Else: Preprocessing



additional instances:157

Techniques: shared monomial lifting, ite bounding, (ite reconstruction)

additional instances: 1422

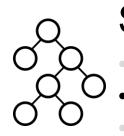
Techniques: constant-ite simplification, conjunctive-ite compression

Saarland Informatics Campus

Simplex data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

[...] invented by our team [...] invented & published by someone else [...] never published but implemented



Simplex data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Mathematical Representation:

$$y = \frac{p_1}{q_1} \cdot x_1 + \dots + \frac{p_n}{q_n} \cdot x_n$$

Mathematical Representation:

$$y = \frac{p_1}{q_1} \cdot x_1 + \dots + \frac{p_n}{q_n} \cdot x_n$$

Mathematical Representation:

$$y = \frac{p_1}{q_1} \cdot x_1 + \dots + \frac{p_n}{q_n} \cdot x_n$$

Data Structure Representation:

$$2 \cdot n$$
 integers

Mathematical Representation:

$$y = \frac{p_1}{\overline{q_1}} \cdot x_1 + \dots + \frac{p_n}{\overline{q_n}} \cdot x_n$$

Data Structure Representation:

$$2 \cdot n$$
 integers

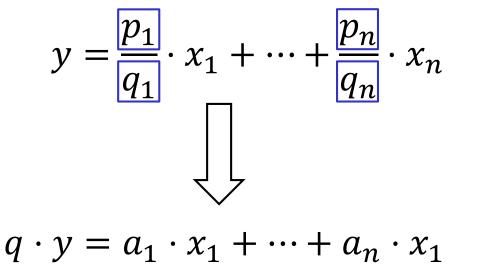
where
$$q \coloneqq lcm(q_1, ..., q_n)$$

 $a_i \coloneqq \frac{p_i}{q_i} \cdot q$

informati

SIC Saarland Informatics Campus 25/25





Data Structure Representation:

$$2 \cdot n$$
 integers

where
$$q \coloneqq lcm(q_1, ..., q_n)$$

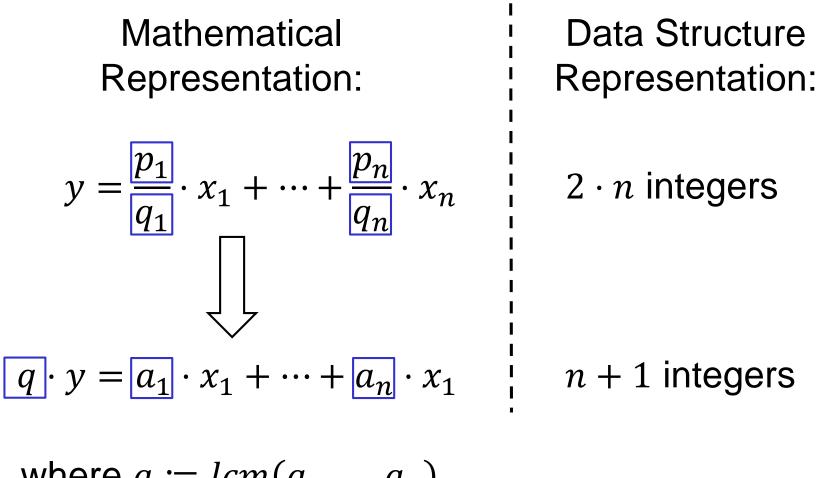
 $a_i \coloneqq \frac{p_i}{q_i} \cdot q$

max planck institut

informatil

25/25

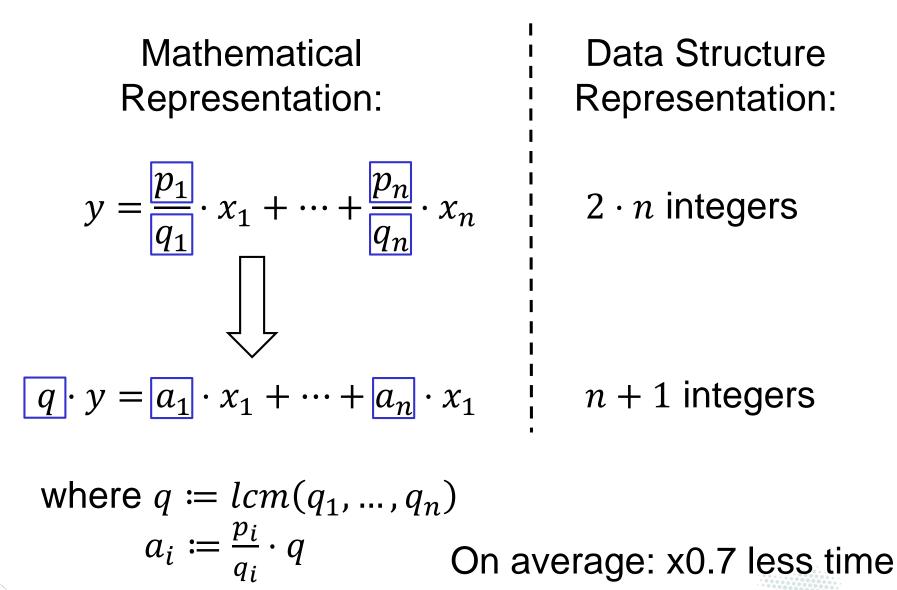
rmatics Campus



where
$$q \coloneqq lcm(q_1, ..., q_n)$$

 $a_i \coloneqq \frac{p_i}{q_i} \cdot q$

informatik



max planck institut informatik

25/25

ormatics Campus

SAT and theory interaction:

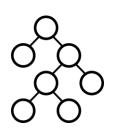
- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

SAT

Theory

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]



Data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Preprocessing:

if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]

rmatics Campus

- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

max planck institut