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Avionics & Automotive
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- Strict software development 
process, encoded in standards 
(e.g., DO-178C)

- Requirement-centric process

- Derive software from reqs.

- Provide tests to witness that 
requirements are met 
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Industrial Automation
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- IEC-61131 defines 5 
programming languages for 
PLCs

- Two textual (ST, IL)

- Two graphical (FBD, LD)

- A “mixed” (SFC)



Industrial Automation
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Control Engineering Languages
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Control Engineering Languages
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- Types
- Booleans
- Signed Integers (SINT, INT, …)
- Unsigned Integers (USINT, UINT, …)
- Floats (REAL, LREAL)

- Semantics of the above:
- Fixed-width
- Discrete evolution of memory values



Intrepid intro

13



Intrepid’s guiding principles

- Fast simulation

- Bit-precise

- Scriptable

- Parsing real-world languages
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Intrepid: a model-checking library

- Backend: C++ engine (intrepid)
- State representation (SMT formulas in Z3)
- State exploration (Satisf. and QE calls to Z3)
- Exposes a C API

- Python API (intrepyd)
- Wraps the C API, and provides OO Python API
- Retains efficiency, but provides flexibility and fun
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Intrepid’s input language

- There is no input language: you write benchmarks 
directly in Python
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Intrepid’s input language
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Some advantages
- Functions and classes come for free
- Benchmarks are programs

- Can natively import them (even “on-the-fly”)
- Autocompletion

- I don’t have to maintain a parser 



Intrepid’s Simulator

- Linear-time in size of circuit

- Fills out values of a “trace” object
- Values for inputs can be specified for specific time-

stamps, otherwise they are defaulted to false/0

- Traces can be converted into pandas dataframes

- Counter-examples are traces, so they can be readily re-
simulated to check their validity
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Intrepid’s Engines

- BMC
- Finds counterexamples for some targets, at some depth

- Optimizing BMC
- Find counterexamples that satisfies the highest number 

of targets

- Backward Reachability
- Finds counterexamples and proves targets unreachable
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Intrepid’s Engines
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- Multi-target 
engines

- Target: a Boolean 
signal that we want 
to reach

- Watch: values that 
we want to see in 
trace 



Intrepid’s Engines
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An example 
application: ATG
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ATG: compute MC/DC

- MC/DC is a testing criterion defined in DO-178C, for critical software

- Decision: a sub-circuit with a Boolean output

- Condition: a Boolean net in the decision that needs to be observed

- Task: given a decision D, for each condition C find two tests T1, T2 such 
that

- C has value true in T1
- C has value false in T2
- D evaluates differently in T1 and T2
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ATG: compute MC/DC
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- Each row is a test
- Tests 0 and 1 show MC/DC for A

A B C O

0 T T F T

1 F T F F

2 T F F F

3 F F T T

4 F F F F



ATG: compute MC/DC

- To come up with suitable tests (the table) is easy
- … but, the less tests are produced, the better

- Tests are to be written down on tables and reviewed by 
the FAA (no kidding)

- It is not so easy, it is an optimization problem
- Also, not merely combinational, sequential part 
plays a role too

- Need for an optimizing-BMC
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ATG: compute MC/DC
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Add targets to the 
BMC-opt engine
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each MC/DC test pair

Remove unreachable 
targets with BR

Just 300 Python LOC



Parsers for real-world 
industrial languages 
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Control Engineering Languages
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Lustre

IEC 61131-3



Lustre to Python

- Parser written in Python using ANTLR

- Takes Lustre, dumps Intrepyd’s Python API
- benchmark.lus => benchmark.py

- Good collection of benchmarks (Kind2), thanks for 
the effort of collecting them
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Simulink/Stateflow to Python

- Simulink to Python: initial translation implemented 
on top of ConQAT Java libraries
- Very fast but
- A pain to implement in detail and to maintain
- Need to infer data types

- Stateflow to Python: a real nightmare
- No available specification of the language!
- Need to guess behavior via simulation
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FAILURE



Simulink/Stateflow to IEC-61131 ST to Python

- Matlab provides a toolkit called Simulink PLC Coder that 
generates IEC-61131 ST

- Two birds with one stone:
- We can indirectly handle Simulink/Stateflow
- We can set foot in the Industrial Automation world

- No need to parse the “whole” ST language, but only a subset 
(i.e., no loops)

- Parser implemented again with ANTLR in Python
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Simulink/Stateflow to IEC-61131 ST
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Experiments
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Intrepid vs Luke on Invalid benchmarks

- Basically two different implementation 
of BMC

- Solved by Intrepid: 341 in 589 s
- Solved by Luke: 342 in 3219 s
- https://plot.ly/create/?fid=robertobrutt

omesso:30#/
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https://plot.ly/create/?fid=robertobruttomesso:30


Intrepid vs Luke on Valid benchmarks

- Basically TI vs Backward Reach
- Solved by Intrepid: 182 in 3242 s
- Solved by Luke: 137 in 335 s
- https://plot.ly/create/?fid=robertobrutt

omesso:32#/
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https://plot.ly/create/?fid=robertobruttomesso:32


Intrepid vs Luke on Valid benchmarks

- Solved by Intrepid overall: 
523 in 3831 s

- Solved by Luke overall: 
479 in 3557 s

- https://plot.ly/create/?fid=r
obertobruttomesso:36#/
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https://plot.ly/create/?fid=robertobruttomesso:36


Preliminary experiments: GPCA Simulink/Stateflow

- Benchmark from the CocoSim suite (https://coco-
team.github.io/cocosim/)

- Simulink/Stateflow model of an infusion pump
- Translated into IEC-61131 ST with Matlab and 
then into Python with our frontend (takes a few 
seconds)

- Out of 8 properties, 4 can be solved in about 50 
seconds (14 seconds for parsing)
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Conclusion
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How to get intrepid

- Intrepid is open-source, BSD-3 licensed
- Works on Windows and Linux “officially”

- repo = https://github.com/formalmethods
- Backend: repo/intrepid
- Python API: repo/intrepyd
-pip install intrepyd
- Blog: https://formalmethods.github.io
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