
Roberto Bruttomesso

Intrepid: an SMT-based Model Checker for 
Control Engineering and Industrial Automation

SMT 2019 



Control Engineering

2



Control Engineering

3

Controller

Sensor

Motor

Physical 
System



Avionics & Automotive

4

- Strict software development 
process, encoded in standards 
(e.g., DO-178C)

- Requirement-centric process

- Derive software from reqs.

- Provide tests to witness that 
requirements are met 



Avionics & Automotive

5



Avionics & Automotive

6

Checker

ATG

Lustre



Industrial Automation

7



Industrial Automation

8

PLC

Sensor

Motor



Industrial Automation

9

- IEC-61131 defines 5 
programming languages for 
PLCs

- Two textual (ST, IL)

- Two graphical (FBD, LD)

- A “mixed” (SFC)



Industrial Automation

10

STUXNET



Control Engineering Languages

11

Lustre

IEC 61131-3

Intrepid



Control Engineering Languages

12

- Types
- Booleans
- Signed Integers (SINT, INT, …)
- Unsigned Integers (USINT, UINT, …)
- Floats (REAL, LREAL)

- Semantics of the above:
- Fixed-width
- Discrete evolution of memory values



Intrepid intro

13



Intrepid’s guiding principles

- Fast simulation

- Bit-precise

- Scriptable

- Parsing real-world languages
14



Intrepid: a model-checking library

- Backend: C++ engine (intrepid)
- State representation (SMT formulas in Z3)
- State exploration (Satisf. and QE calls to Z3)
- Exposes a C API

- Python API (intrepyd)
- Wraps the C API, and provides OO Python API
- Retains efficiency, but provides flexibility and fun

15



Intrepid’s input language

- There is no input language: you write benchmarks 
directly in Python

16
example1.py

example2.py



Intrepid’s input language

17

Some advantages
- Functions and classes come for free
- Benchmarks are programs

- Can natively import them (even “on-the-fly”)
- Autocompletion

- I don’t have to maintain a parser 



Intrepid’s Simulator

- Linear-time in size of circuit

- Fills out values of a “trace” object
- Values for inputs can be specified for specific time-

stamps, otherwise they are defaulted to false/0

- Traces can be converted into pandas dataframes

- Counter-examples are traces, so they can be readily re-
simulated to check their validity

18



Intrepid’s Engines

- BMC
- Finds counterexamples for some targets, at some depth

- Optimizing BMC
- Find counterexamples that satisfies the highest number 

of targets

- Backward Reachability
- Finds counterexamples and proves targets unreachable

19



Intrepid’s Engines

20

- Multi-target 
engines

- Target: a Boolean 
signal that we want 
to reach

- Watch: values that 
we want to see in 
trace 



Intrepid’s Engines

21

Add targets to the 
engine

Reach targets

Removed last 
reached targets

yes

Can prove?
no

ta
rg

et
s 

> 
0

All 
remaining 

targets 
unreachable

yes

Increase 
depth

no

done
targets = 0



An example 
application: ATG

22



ATG: compute MC/DC

- MC/DC is a testing criterion defined in DO-178C, for critical software

- Decision: a sub-circuit with a Boolean output

- Condition: a Boolean net in the decision that needs to be observed

- Task: given a decision D, for each condition C find two tests T1, T2 such 
that

- C has value true in T1
- C has value false in T2
- D evaluates differently in T1 and T2

23



ATG: compute MC/DC

24

- Each row is a test
- Tests 0 and 1 show MC/DC for A

A B C O

0 T T F T

1 F T F F

2 T F F F

3 F F T T

4 F F F F



ATG: compute MC/DC

- To come up with suitable tests (the table) is easy
- … but, the less tests are produced, the better

- Tests are to be written down on tables and reviewed by 
the FAA (no kidding)

- It is not so easy, it is an optimization problem
- Also, not merely combinational, sequential part 
plays a role too

- Need for an optimizing-BMC
25



ATG: compute MC/DC

26

Add targets to the 
BMC-opt engine

Reach targets

Remove last 
reached targets,

Save test

yes

ta
rg

et
s 

> 
0

Increase 
depth

no

done
targets = 0

Create a target per 
each MC/DC test pair

Remove unreachable 
targets with BR

Just 300 Python LOC



Parsers for real-world 
industrial languages 

27



Control Engineering Languages

28

Lustre

IEC 61131-3



Lustre to Python

- Parser written in Python using ANTLR

- Takes Lustre, dumps Intrepyd’s Python API
- benchmark.lus => benchmark.py

- Good collection of benchmarks (Kind2), thanks for 
the effort of collecting them

29



Simulink/Stateflow to Python

- Simulink to Python: initial translation implemented 
on top of ConQAT Java libraries
- Very fast but
- A pain to implement in detail and to maintain
- Need to infer data types

- Stateflow to Python: a real nightmare
- No available specification of the language!
- Need to guess behavior via simulation

30

FAILURE



Simulink/Stateflow to IEC-61131 ST to Python

- Matlab provides a toolkit called Simulink PLC Coder that 
generates IEC-61131 ST

- Two birds with one stone:
- We can indirectly handle Simulink/Stateflow
- We can set foot in the Industrial Automation world

- No need to parse the “whole” ST language, but only a subset 
(i.e., no loops)

- Parser implemented again with ANTLR in Python

31



Simulink/Stateflow to IEC-61131 ST

32



Experiments

33



Intrepid vs Luke on Invalid benchmarks

- Basically two different implementation 
of BMC

- Solved by Intrepid: 341 in 589 s
- Solved by Luke: 342 in 3219 s
- https://plot.ly/create/?fid=robertobrutt

omesso:30#/

34

https://plot.ly/create/?fid=robertobruttomesso:30


Intrepid vs Luke on Valid benchmarks

- Basically TI vs Backward Reach
- Solved by Intrepid: 182 in 3242 s
- Solved by Luke: 137 in 335 s
- https://plot.ly/create/?fid=robertobrutt

omesso:32#/

35

https://plot.ly/create/?fid=robertobruttomesso:32


Intrepid vs Luke on Valid benchmarks

- Solved by Intrepid overall: 
523 in 3831 s

- Solved by Luke overall: 
479 in 3557 s

- https://plot.ly/create/?fid=r
obertobruttomesso:36#/

36

https://plot.ly/create/?fid=robertobruttomesso:36


Preliminary experiments: GPCA Simulink/Stateflow

- Benchmark from the CocoSim suite (https://coco-
team.github.io/cocosim/)

- Simulink/Stateflow model of an infusion pump
- Translated into IEC-61131 ST with Matlab and 
then into Python with our frontend (takes a few 
seconds)

- Out of 8 properties, 4 can be solved in about 50 
seconds (14 seconds for parsing)

37

https://coco-team.github.io/cocosim/


Conclusion

38



How to get intrepid

- Intrepid is open-source, BSD-3 licensed
- Works on Windows and Linux “officially”

- repo = https://github.com/formalmethods
- Backend: repo/intrepid
- Python API: repo/intrepyd
-pip install intrepyd
- Blog: https://formalmethods.github.io

39

https://github.com/formalmethods
https://formalmethods.github.io/


Thank You
www.nozominetworks.com


