
Programming Z3

Nikolaj Bjørner 
Microsoft Research

SMT workshop  
July 8, 2019

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6 SMTWorkshop.ipynb

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6


Outline

• Past, present
– An update on Z3
– Some applications

• Some not so Secret Sauce

• Actually Programming Z3

• Active Directions



An update on 



Solver https://github.com/Z3Prover/z3

Integrates a wealth of domains and solvers

Developed at Microsoft Research

https://github.com/Z3Prover/z3


Symbolic Analysis 
Engines

SAGE

HAVOC

Efficient E-matching for SMT solvers

Model-based Theory Combination.
Relevancy Propagation

Effectively Propositional Logic

Engineering DPLL(T) + Saturation
Generalized, Efficient Array Decision Procedures

Linear Quantifier Elimination 

Model Based Quantifier Instantiation

Quantified Bit-Vectors
CutSAT: Linear Integer Formulas

Model Constructing SAT
Existential Reals 

nZ: Opt+MaxSMT
µZ: Datalog

Generalized PDR

SLS, floats 

Internals 



Some Microsoft Uses of 

Microsoft
Security Risk 

Detection

SecGuru and
FIB verifier

Dynamics 
Product 

Configurator

Project 
Everest

https://www.fstar-
lang.org/tutorial/

https://www.fstar-lang.org/tutorial/


Quantum: Reversible pebbling game

DATE-2019. Giulia Meuli Mathias Soeken, Giovanni De Micheli (EPFL)
Martin Roetteler, B (Microsoft)

Example: find a pebbling strategy using 6 pebbles. 

a ◌ ● ● ● ● ● ● ● ● ● ◌

b ◌ ◌ ● ● ● ● ● ● ● ◌ ◌

c ◌ ◌ ◌ ● ● ● ● ● ◌ ◌ ◌

d ◌ ◌ ◌ ◌ ● ● ● ◌ ◌ ◌ ◌

e ◌ ◌ ◌ ◌ ◌ ● ● ● ● ● ●

f ◌ ◌ ◌ ◌ ◌ ◌ ● ● ● ● ●

a b

f

e

dc

x
1

x
2

x
3

x
4

y
1

y
2

P1 = {φ}, 

P2 = {a},

P3 = {a, b},

P4 = {a , b, c},

P5 = {a, b, c, d},

P6 = {a, b, c, d, e},

P7 = {a, b, c, d, e, f},

P8 = {a, b, c, e, f}, 

P9= {a, b, e, f},

P10 = {a, e, f},

Pm = P11 = {e, f}

pebbling configurations

x1
x2
x3
x4
| ⟩0
| ⟩0
| ⟩0
| ⟩0

a a
b bc cd

e

d
f

| ⟩0
| ⟩0 y2

y1

| ⟩0

x1
x2
x3
x4
| ⟩0

| ⟩0

| ⟩0

space-time trade-off

reversible circuit



Everest, EverCrypt, EverParse
F*: A general purpose 
programming
language
and verification 
tool

kreMLin
Compiler from 
(a subset of)
F* to C

val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧

→
ST unit

requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*
poly1305_mac computes a 
polynomial in GF(2130-5), 
storing the result in tag, 
and not modifying anything 
else

Efficient C 
implementation
Verification imposes no 
runtime performance 
overhead

void
poly1305_mac(uint8_t *tag, uint32_t len, uint8_t *msg, uint8_t *key)
{

uint64_t tmp [10] = { 0 };
uint64_t *acc = tmp
uint64_t *r = tmp + (uint32_t)5;
uint8_t s[16] = { 0 };
Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);
Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);
Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}

EverCrypt Clients: Mozilla Firefox; WireGuard VPN; Linux Kernel Zinc crypto library; 
MirageOS unikernel; Tezos blockchain; Microsoft QUIC.



Trusted Financial Software

https://try.imandra.ai/

• Recursive Function Unfolding
• Algebraic ML Datatypes
• Ground Arithmetic

https://try.imandra.ai/


Casey Mulligan, University of Chicago, School of Economics
Uses Mathematica, Redlog, Z3 

Axiomatic Economics
Models of economics formulated using Non-linear Real Arithmetic



Verifying 100Ks Routers in Azure

Pull forwarding 
tables

Generate 
Local Contracts

using NGS

Schedule 
FIB retrieval

Hardware
Proxy

Routing Table 
Validator

Z3

Network 
Graph 
Service

Azure Blob 
Storage

Azure Blob 
Storage

Kusto

Azure 
Queue

Azure 
Queue

Reality
What is on 
the routers

Intent
Data center 

layout

Verification

[SIGCOMM 2019]



BlockChain
• Solidity

– Static Analysis, Leonardo Alt et al
– Augur - Symbolic Execution
– SPACER

• runtimeverification.com [Rosu + 30]
– Verify byte code, ground truth
– Arithmetic over 256-bit bit-vectors (use linear arithmetic)

• synthetic-minds.com [Srivastava]
– Recursive functions (modeling a heap library)

• www.certora.com [Grossmann, Katz, Sagiv, Taube]
– Quantifier Free Arrays + Bit-Vectors (QF_ABV)
– Quantifier Free Functions + linear arithmetic
– EPR + linear arithmetic

Rigorous Methods for
Smart Contracts
Dagstuhl, June 1-5 2020

Org: Christakis, B, Maffeis, Rosu

https://runtimeverification.com/
https://synthetic-minds.com/
http://www.certora.com/


What SMT features are used by 
applications?

• QF_ABV: symex with heap

• QF_S: XML configurations, policies

• UFLIA: Boogie, Everest, Viper, ..

• QF_UFLIA, QF_ABV: Smart contracts

• ALL (Kitchen sink): Pex, Haskell

• Boolean Theories: Operations research applications, 
approximate counting (Xor)

When can policies not be 
sensitive to strings?

Formulas with 256 
bit arithmetic



SOME (NOT SO) SECRET SAUCE



Guiding inferences using models

Model-based Theory Combination [M,B 07]

Model-based Quantifier Instantiation [G,M (B) 09]

Generalized Property Directed Reachability     [H,B 12]

Model-constructing Satisfiability [J,M 11,12,13]

Model-based Quantifier Elimination [G 14]



Proofs
Conflict Clauses

M
od

el
s

lit
er

al
 a

ss
ig

nm
en

ts
Conflict Resolution

Backjum
p

Pr
op

ag
at

e

Mile High: Modern SAT/SMT search



On Constructing Models

• Build a partial interpretation 𝑀 by setting an 
unconstrained variable

• Propagate with 𝑀

• Backtrack if propagation 
leads to a conflict

Role models



On Constructing Models - variant

• Build a partial interpretation 𝑀 by setting an 
unconstrained variable

• Extend 𝑀 by solving sub-formula

• Propagate with 𝑀 globally

• Backtrack (locally or globally) if propagation leads 
to a conflict



Model-based Theory Combination
Use a candidate model 𝑀' for a theory 𝑇' and propagate all 
equalities implied by 𝑀'.
– If 𝑀' ⊨ 𝑇' ∪ Γ' ∪ { 𝑢 = 𝑣 } then propagate 𝑢 = 𝑣

Hedging that other theories agree.

Backtrack if some other theory disagrees with 𝑢 = 𝑣.

It is cheaper to enumerate equalities for a specific model.

Trick: instrument solver to create as few equalities as possible.



Model-based Quantifier Instantiation

Assume we are given 𝜓 ∧ ∀𝑥 𝜑[𝑥], 
then use model for 𝜓 as starting point
for search of instantiations of ∀𝑥 𝜑[𝑥]

𝑡8 = 𝑥8is not a strict 
requirement. 

It is sufficient to use M to mine 
for a term t that still satisfies 
𝜑[𝑡]



Model-based Quantifier Elimination
project can use 𝑀9 to 
identify a finite set of 
solutions to 𝑣 that cover all 
of e

Example: project 𝑥 from 𝑦; ≤ 𝑥 …𝑦;9 ≤ 𝑥 ∧ 𝑥 ≤ 𝑧;, … , 𝑧;9 =
𝑦;, … , 𝑦@ ≤ 𝑦;9, 𝑦;9 ≤ 𝑧;, … , 𝑧;9

assuming 𝑀(𝑦;), … ,𝑀(𝑦@) ≤ 𝑀(𝑦;9), corresponds to instantiating x by 𝑦;9



mc(x) = x-10 if x > 100
mc(x) = mc(mc(x+11))   if x £ 100
assert (x ≤ 101 Þ mc(x) = 91)

Symbolic model checking as 
Satisfiability of Horn Clauses

∀𝑿. 𝑿 > 𝟏𝟎𝟎® mc(𝑿,𝑿 − 𝟏𝟎)
∀𝑿, 𝒀, 𝑹. 𝑿 ≤ 𝟏𝟎𝟎 Ù mc(𝑿 + 𝟏𝟏, 𝒀) Ù mc(𝒀,𝑹) ® mc(𝑿,𝑹) 
∀𝑿,𝑹. mc(𝑿,𝑹) ∧ 𝑿 ≤ 𝟏𝟎𝟏 → 𝑹 = 𝟗𝟏

Finds solution for mc



Reachability: Mile-high perspective

• Over-approximate reachable states from Init.
– Model of Invariant “from above”

• Under-approximate states that can reach ¬𝑆
– Model of trace “from below”

• If over and under-approximations are separated at bound 
k, produce certificate for separation
– Strengthens over-approximation of reachable states
– [SPACER: + under-approximations reachable states]

F (𝐼)𝐼𝑛𝑖𝑡 F S(𝐼)BS ¬𝑆 B ¬𝑆 ¬𝑆
Conflict Resolution Conflict PropagationConflict Propagation



Solving $R Efficiently
A key idea: Use partial solution to guide the search

𝑥T + 2𝑥S + 3𝑦S − 5 < 0

𝑥S + 𝑦S < 1

−4𝑥𝑦 − 4𝑥 + 𝑦 > 1

Feasible Region

Extract small core

Dejan Jovanovich & Leonardo de Moura, IJCAR 2012

x = 0.5



Strategies

Model-based methods: 
– used with back-jumping 
– guide inferences

Contrast with

Strategies: 
– prune state space of choices
– Limit required inferences



A Basic Quantifier Strategy

[better ones for QBF by Rabe; Janota, Klieber, B]



Branching Strategies

Can we train a branching strategy from benchmarks?

NeuroCore [Daniel Selsam, B. SAT 2019]: 
– Train DNN about variables likely to be in core.  
– Periodic refocus to recalibrate variable splitting queue.
– Claim: DNN provides good precision/recall. Speedups.
– Caveat: DNNs are likely not essential for refocusing



PROGRAMMING Z3 - REALLY

Solving formulas
Models, cores
Optimization, Fixed-points

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6


SOME ACTIVE DIRECTIONS



SM(Boolean Algebras)

• Plugin in SAT core for 
– Cardinality constraints 
– Pseudo Booleans
– Xor

• SMT over other Boolean Functions?
– propagators 
– In-processing
– conflict analysis



Other recent/in-progress Solvers

• Monoids (strings) and Sequences

• Special Relations (partial, linear orders) 

• Transitive Closure as a combinator

• Boolean Algebra and Presburger Arithmetic

• A theory for Job Scheduling

• New full arithmetic solver replacement by Lev Nachmanson



Scaling SAT/SMT with lookaheads

Marijn HeuleOliver Kullman

Sat11.w 
TAoCP
Vol 4B sec 7.2.2.2

CDCL + lookahead
Actively pursued for scaling SAT



The Cube, the Cloud and Z3

L0 worker

L1 worker
Solves and creates 

subgoals

Azure 
Queue

Cubes
Formulas
Solutions

Configurations

Blob Store Store and 
retrieve 
state

Prepare 
initial goal

get 
goal

add 
goal

Rahul Kumar (MSR)
Miguel Neves (U Lisboa)

L1 worker
Solves and creates 

subgoals

L1 worker
Solves and creates 

subgoals

L1 worker
Solves and creates 

subgoals

L1 worker
Solves and creates 

subgoals



Summary

• SMT applications and the Gartner Hype curve

• Models and Strategies in SMT search

• Programming Z3: BMC, MaxSAT, AllSAT, Cubes

• Directions: Scaling SAT/SMT, CP theories 

Thanks: Arie Gurfinkel, Marijn Heule, Rahul Kumar, Leonardo de Moura, Lev Nachmanson, 
Nina Narodytska, Miguel Angelo Da Terra Neves, Daniel Selsam, and Christoph Wintersteiger.


