Programming Z3

Nikolaj Bjgrner
Microsoft Research

SMT workshop
July 8, 2019

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6 SMTWorkshop.ipynb

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6

Outline

Past, present

— An update on 73
— Some applications

Some notso Secret Sauce
Actually Programming Z3

Active Directions

[Z3Prover / 23 P usedby~ | 6 @ uUnwatch~ | 172 W Unstar | 4,241 Yrork 723

<> Code Issues 137 Pull requests & Projects 0 Wiki Security Insights Settings

The Z3 Theorem Prover Edit

Manage topics

© 10,830 commits ¥ 8 branches © 14 releases 22121 contributors s View license

Branch: master~ | | New pull request Create new file | Upload files | Find File | | SIS EERlEEtRg

B nicolajgiomer ada 222 t commit 25c9341 31 minutes ago

example Lates:

B cmake Change from BINARY_DIR to PROJECT_BINARY_DIR
B contrib Fix bug in gprofdiff

B doc Change from BINARY_DIR to PROJECT_BINARY_DIR
B examples add #2298 to regression/example

8 noarch follow instructions from #1879

Updated nuget package spec and directions

ix 23 static link options

98 to regression/example

[TravisCl] Implement TravisCl build and testing infrastructure for Linux
set text default to auto to try to avoid crif disasters

incrementally adding files from dotnet core pull request from @yatli
Revert "api: dotnet: switch to multi-targeting project and modern cma...
Change from BINARY_DIR to PROJECT_BINARY_DIR

update license for space/quotes per 982

{CMake.md merge with Z3Prover/master

4

add macz3 status

release notes 5 months ago
merge with Z3Prover/master 11 months ago
merge with Z3Prover/master 11 months ago

;

p theorem prover from Microsoft Research. It is licensed under the MIT license.

are not familiar with Z3, you can start here.

BLilt binaries for releases are available from here, and nightly builds from here.

Z3 can be built using Visual Studio, a Makefile or using CMake. It provides bindings for several programming languages.

See the release notes for notes on various stable releases of Z3.

Build status

x64 i x86 i x64 Ubuntu x64 Debian x64 macOos TravisCl

e R R -]

ZBSOhIer https://github.com/Z3Prover/z3

Integrates a wealth of domains and solvers

NuGet, pip, Opam, Developed at Microsoft Research

Rust, JavaScript, Haskell

L

‘ C++ Python .Net Java Ocaml Tactics

l cuet Conquer
>
Tacticals: Then, Or, Probe, Parallel Or/Then T
SMTLIB2 E-matching Theories

based
Quantifier))
Instantiation Arithmetic
A Tavs
(SMT ’ Fixedpoint ’ [rrays]
EUF + SAT Bitvectors
Optimization it-vectors
‘ NLSat H SAT ’\\
[[Datatypes j
I Model
QSAT based
\ j Quantifier Strings/Sequences
Instantiation
L %

https://github.com/Z3Prover/z3

Symbolic Analysis
Engines

SLS, floats

vZ: Opt+MaxSMT

et nZ: Datalog
FORMULA Generalized PDR

Modeling Foundatio

Existential Reals
Model Constructing SAT

s
u, O CutSAT: Linear Integer Formulas
el SAGE Quantified Bit-Vectors
ERMINATOR Linear Quantifier Elimination

Model Based Quantifier Instantiation

Generalized, Efficient Array Decision Procedures

Engineering DPLL(T) + Saturation

@WHE Effectively Propositional Logic

Model-based Theory Combination.

Relevancy Propagation

Efficient E-matching for SMT solvers ZB |nterna|S

Some Microsoft Uses of z=

also: Dynamics Tax tool, Visual Studio C++ compiler,
Azure Blockchain, Static Driver Verifier, Pex

Microsoft Dynamics

SecGuru and
FIB verifier

Project
Everest

Product
Configurator

Security Risk
Detection

Solved billions of Online checks of O(10%) Maintains design Formal proofs for

WinQUIC

Program paths Network Configurations Production Line Configs Program + Spec

fuzzing constraints Azure routers + ACLs space of parameters

https://www.fstar-lang.org/tutorial/

Quantum: Reversible pebbling game

Example: find a pebbling strategy using 6 pebbles.

Yy
1

O

2

ol

1 2 3

pebbling configurations

P, ={d},
P, ={a},
P3 = {al b}r

P,={a,b,c},
Ps={a, b, c,d},
Pe=1{a, b, c, d, e},
P,={a, b, c d, e,f}
Ps={a, b, c e, f}
Ps={a, b, e, f},
Po=1{a, e f}
P,=P;; ={e, f}

space-time trade-off

- o o o T o

reversible circuit

|0)

|0)

|0)

|0)

ol=)

10)

10)

[0)
[0)
[0)
|0)
Y1
Y2

Everest, EverCrypt, EverParse

F*: A general purpose

programming val poly1305_mac: tag:nbytes 16 -

language h : * iggfﬂzit;s len{disjoint tag msg} -
and verification Mat speC|r1F key:nbytes 32 {disjoint msg key A disjoint tag
tool poly1305_mac cCOmMputes a >)
olynomial in GF(2130-5) o unit
P Y : ’ (requires (A h - msg € h A key € h A tag € h))
storing the result in tag, (ensures (A ho _ hl - :]
i . let r=Spec.clamp h@.[sub key @ 16] in

:I’:ZB and not modifying anything lot sohb. [sub Koy 16 16] in

else modifies {tag} h@ hl A

| hl.[tag] == Spec.mac_1305 (encode bytes h@.[msg]) r s))

!

kreMLin void

poly1305_mac(uint8 t *tag, uint32 t len, uint8 t *msg, uint8 t *key)
{

Compiler from Efficient C uinte4 t tmp [10] = { @ };
(a subset of) . . uint64 t *acc = tmp
F*to C Impl-eme-nta-tlon uinte4_t *r = tmp + (uint32 t)5;
Verification imposes no uints t s[16] = { @ };
: Crypto_Symmetric_Poly1305_poly13@5_init(r, s, key);
runtime performance Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);
Overhead Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);
}

EverCrypt Clients: Mozilla Firefox; WireGuard VPN; Linux Kernel Zinc crypto library;
MirageQOS unikernel; Tezos blockchain; Microsoft QUIC.

Trusted Financial Software

* Recursive Function Unfolding
e Algebraic ML Datatypes
. Ground Arithmetic

Imandra is a cloud-native
automated reasoning engine.

Imandra's groundbreaking Al helps ensure
the algorithms we rely on are safe,
explainable and fair.

Verifying ReasonReact component logic

TRY IMANDRA ONLINE — ReasonML & Imandra

4 September 2018

INSTALL IMANDRA LOCALLY

Spotlight on an Imandra user:

In 2017 Aesthetic Integration partnered with Goldman -//trv.imandra.ai
Sachs to help deliver the SIGMA X MTF Auction Book, a

https://try.imandra.ai/

Axiomatic Economics

Models of economics formulated using Non-linear Real Arithmetic

Figure 4b. The Laffer curve for transfers
share of
share of efficient GDP
efficient GDP %
0.8

Figure 4a. The Laffer curve for transfers

u(e,n) > Ugink

— u(e,n) = Ugink

e BB
QR

— u(c,n) S Ugink

Casey Mulligan, University of Chicago, School of Economics
Uses Mathematica, Redlog, Z3

Verifying 100Ks Routers in Azure

Intent Reality

Data center Azure Blob Azure Blob What iS on
| ayo ut Storage Storage

the routers

Network Generate

Gralf)h Local Contracts
Service using NGS

Routing Table
Validator Pull forwarding Hardware
tables Proxy

‘Qouli\ﬂjlc DAL 2 (;7)':*-)
3 -?:'i(ﬂlv“r’—b ,j;;%f,,,, RL
/'_Hw,gu_ww.y f/{x;;/’ i%‘“’;,\f—/‘*\ I I
i Q,“i%\hv‘_“ﬂ ,l“. . AP Schedule
AN FIB retrieval

A J 1
PR e oL
Tlars

Y

Verification

[SIGCOMM 2019]

BlockChain

Rigorous Methods for

Solidity Smart Contracts
— Static Analysis, Leonardo Alt et al Dagstuhl, June 1-5 2020
— Augur - Symbolic Execution
— SPACER

Org: Christakis, B, Maffeis, Rosu

runtimeverification.com [Rosu + 30]

— Verify byte code, ground truth
— Arithmetic over 256-bit bit-vectors (use linear arithmetic)

synthetic-minds.com [Srivastava]
— Recursive functions (modeling a heap library)

www.certora.com [Grossmann, Katz, Sagiv, Taube]

— Quantifier Free Arrays + Bit-Vectors (QF _ABV)
— Quantifier Free Functions + linear arithmetic
— EPR + linear arithmetic

https://runtimeverification.com/
https://synthetic-minds.com/
http://www.certora.com/

What SMT features are used by
applications?

QF ABV: symex with heap When can policies not be
sensitive to strings?

QF S: XML configurations, policies *°

UFLIA: Boogie, Everest, Viper, ..

QF_UFLIA, QF _ABV: Smart contracts -eg :
Formulas with 256

ALL (Kitchen sink): Pex, Haskell

Boolean Theories: Operations research applications,
approximate counting (Xor)

SOME (NOT SO) SECRET SAUCE

Guiding inferences using models

Model-based Theory Combination [M,B 07]
Model-based Quantifier Instantiation [G,M (B) 09]
Generalized Property Directed Reachability [H,B 12]
Model-constructing Satisfiability [J,M 11,12,13]

Model-based Quantifier Elimination |G 14]

Mile High: Modern SAT/SMT search

A
RN
Backjump WA/\

Proofs
Conflict Clauses

On Constructing Models

e Build a partial interpretation M by setting an
unconstrained variable

* Propagate with M

e Backtrack if propagation
leads to a conflict

/\'V .)N
r«.»' - :

Role models

On Constructing Models - variant

Build a partial interpretation M by setting an
unconstrained variable

Extend M by solving sub-formula
Propagate with M globally

Backtrack (locally or globally) if propagation leads
to a conflict

Model-based Theory Combination

Use a candidate model M; for a theory T; and propagate all
equalities implied by M;.
—IfM; ET; UI; U{u =v}then propagateu = v

Hedging that other theories agree.
Backtrack if some other theory disagrees with u = v.
It is cheaper to enumerate equalities for a specific model.

Trick: instrument solver to create as few equalities as possible.

Model-based Quantifier Instantiation

Assume we are given Y A Vx @|x],
then use model for Y as starting point
for search of instantiations of Vx ¢|x]

s.add(v) _ .
while True: tM = xMis not a strict
if unsat == s.check(): requirement.

return unsat

M = s.model() It is sufficient to use M to mine
checker = Solver()

checker. add (=™ []) for a term t that still satisfies

if unsat == checker.check(): @[t]
return sat

M = checker.model()

find t, such that z &t ,tM =2M,

s.add(¢p[t])

Model-based Quantifier Elimination

def qe(37 . Y. project can use M, to

E,ajdzlj)olver*(): Solver() identify a finite set of

2, 2dd(~F) solutions to v that cover all
r = False

while sat == e.check(): Of e

My = e.model()
M, = [1it for 1lit in literals(F) if is *rue(M;.eval(lit))]
assume F' is in negation normal form
assert unsat == a.check(M;)
Ms = a.unsat _core()
m = project(Msy,)
G =GV
e.add(—m)
return G

Example: project x from (y; < x ...y10 S X AX < Zq, ..., Z10) =
Y1 Y9 = Y10y V10 = Z1, -5 Z10

assuming M (y,), ..., M(yg9) < M(y40), corresponds to instantiating x by y;,

Symbolic model checking as
Satisfiability of Horn Clauses

mc(x) = x-10 if x>100
mc(x) = mc(mc(x+11)) if x <100
assert (x £ 101 = mc(x) =91)

vX. X > 100 = mc(X, X — 10)
VX,Y,R. X < 100 A mc(X + 11,Y) A mc(Y, R) = mc(X, R)
VX,R. mc(X,R)AX <101 > R = 91

Finds solution for mc

Reachability: Mile-high perspective

Init 9

. » - . L r < L " ‘
Cogflict RescQYilgt 2o b9t Zre oejcesijoy)

* Over-approximate reachable states from Init.
— Model of Invariant “from above”

* Under-approximate states that can reach =S
— Model of trace “from below”

* |f over and under-approximations are separated at bound
k, produce certificate for separation

— Strengthens over-approximation of reachable states
— [SPACER: + under-approximations reachable states]

Solving 4R Efficiently

A key idea: Use partial solution to guide the search

Feasible Region | | / | - x*+2x*+3y?-5<0

—4xy —4x+y>1

Extract small core

Dejan Jovanovich & Leonardo de Moura, 1JCAR 2012

Strategies

Model-based methods:

— used with back-jumping
— guide inferences

Contrast with

Strategies:
— prune state space of choices
— Limit required inferences

A Basic Quantifier Strategy

def strategy(M,j): return /\.M;/_-null,aEAtoms,level(j,a)<j Sign(M’ CL)
def tailv(j): return z;_i,z;,241,...

j=1
M = null
while True:
if F; A strategy(M, j) is unsat:
if j ==
return F is unsat
if j == 2:
return F is sat
C = Core(Fj;, strategy(M, j))

J = Mbp(tailv(j), C)
j = index of max variable in J U {1,2} of same parity as j
Fj = Fj/\—lJ
M = null
else:

M = current model
J=3+1 [better ones for QBF by Rabe; Janota, Klieber, B]

Branching Strategies

Can we train a branching strategy from benchmarks?

NeuroCore [Daniel Selsam, B. SAT 2019]:

— Train DNN about variables likely to be in core.

— Periodic refocus to recalibrate variable splitting queue.
— Claim: DNN provides good precision/recall. Speedups.
— Caveat: DNNs are likely not essential for refocusing

Solving formulas
Models, cores

Optimization, Fixed-points

PROGRAMMING Z3 - REALLY

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6

https://z3examples-nbjorner.notebooks.azure.com/j/notebooks
https://tinyurl.com/y3r67rd6

SOME ACTIVE DIRECTIONS

SM(Boolean Algebras)

* Plugin in SAT core for
— Cardinality constraints
— Pseudo Booleans
— Xor

 SMT over other Boolean Functions?
— propagators
— In-processing
— conflict analysis

Other recent/in-progress Solvers

Monoids (strings) and Sequences

Special Relations (partial, linear orders)
Transitive Closure as a combinator

Boolean Algebra and Presburger Arithmetic

A theory for Job Scheduling

New full arithmetic solver replacement by Lev Nachmanson

Scaling SAT/SMT with lookaheads

@<Construct the |lodk| table@>=
o,u=lmem[root].child, j=k=v=0;
while (1) {

00,look[k].1lit=1mem[u].vcomp;
o,1lmem[u].rank=k++; /* |k| advances in preorder */ CDCL + IOOkahead
if (o,1lmem[u].child) { . .
o,1lmem[u].parent=v; /* fix parent temporarily for traversal */
v=u,u=lmem[u].child; /* descend to |u|'s descendants */ ACtlvely pursued for Scallng SAT
}@+else {
post: o,i=lmem[u].rank;
0,look[i].offset=j,j+=2; /* |j| advances in postorder */
if (v) oo,lmem[u].parent=1lmem[v].vcomp; /* fix parent for lookahead
else o,1lmem[u].parent=0;
if (o,1mem[u].link) u=lmem[u].link; /* move to |u|'s next sibling *,
else if (v) {
o,u=v,v=lmem[u].parent; /* after the last sibling, move ®g |u|'s

goto post;
}@+else break;
¥
}
looks=k;

if (j!=k+k) confusion("looks");

@*Looking ahead. The lookahead process has much in common with what
we do when making a decision at a branch node, except that we

don't make drastic changes to the data structures] We don't

assign any truth values at levels higher than |prnoto_truth|; apd

that level ss=megerved for literals that will bejforged true”if the
lodkahegd procedurte finds no contradictions. Wefdon't create

new b¥glary implicatiefiy, when a ternary clause gets a false literal;

we estima ety tidN, benefit of such bigfary implications instead.

()

Satll.w
TAoCP
Vol 4B sec 7.2.2.2

Donald E. Knuth

Oliver Kullman Marijn Heule

The Cube, the Cloud and Z3

Rahul Kumar (MSR)
Miguel Neves (U Lisboa)

Prepare
initial goal

LO worker

Store and
retrieve
state

o o Blob Store

Cubes

Formulas
Solutions L1 worker

Configurations Solves and creates
subgoals

Summary

 SMT applications and the Gartner Hype curve
* Models and Strategies in SMT search
* Programming Z3: BMC, MaxSAT, AlISAT, Cubes

* Directions: Scaling SAT/SMT, CP theories

Thanks: Arie Gurfinkel, Marijn Heule, Rahul Kumar, Leonardo de Moura, Lev Nachmanson,
Nina Narodytska, Miguel Angelo Da Terra Neves, Daniel Selsam, and Christoph Wintersteiger.

