Towards Bit-Width-Independent Proofs in SMT Solvers

Aina Niemetz¹ Mathias Preiner¹ Andrew Reynolds² Yoni Zohar¹ Clark Barrett¹ Cesare Tinelli²

1. Stanford University, Stanford, USA

2. The University of Iowa, Iowa City, USA

Why Bit-width Independence?

AndOrXor:1733 is correct IFF $(A \neq 0 \lor B \neq 0) \Leftrightarrow (A | B \neq 0)$ is VALID

Alive proves validity up to a certain bit-width

Why Bit-width Independence?

Alive proves validity up to a certain bit-width

Why Bit-width Independence?

Our Goal: proving validity for every bit-width

Our Goal: proving validity for every bit-width

How to express?

How to solve?

Case Studies

Our Goal: proving validity for every bit-width

How to express?

How to solve?

Case Studies

Bit-vectors in SMT-LIB 2

Many-sorted First-order Logic

- Sorts: $\sigma_1, \sigma_2, \ldots$
- Sorted equality, functions, predicates

 $(x \neq_3 000 \lor y \neq_3 000) \Leftrightarrow (x \mid_3 y \neq_3 000)$

What Do We Need?

- Variables ranging over bit-vectors of unspecified bit-width
- Constants with unspecified bit-width 0...0

 $(x \neq_k 0 \dots 0 \lor y \neq_k 0 \dots 0) \Leftrightarrow (x \mid_k y \neq_k 0 \dots 0)$

- No such thing as " σ_k "
- Many-sorted first-order logic does not seem like a natural fit

Language for Bit-vectors of Parametric Width

Language

- Unsorted equal, functions, predicates
- Bit-vector variables: $X = \{x_1, \ldots\}$
- Bit-vector constants: $Z = \{z_1, \ldots\}$
- Integer terms: $N = \{0, n + m, \ldots\}$

Auxiliary Maps

Pair of maps: $\omega = \langle \omega^b, \omega^N \rangle$ • $\omega^b : X \cup Z \to N$ symbolic bit-width

• $\omega^N : Z \to N$ symbolic value

Not every ω can be used

- Validity: always w.r.t. a given ω
- considering all integer interpretations
- Variant of [Pichora 2003]

$(x_1 \neq z_0 \lor x_2 \neq z_0) \Leftrightarrow (x_1 \mid x_2 \neq z_0)$

$(z_0 \& x_1) <_{u} x_2$

Language for Bit-vectors of Parametric Width

Language

- Unsorted equal, functions, predicates
- Bit-vector variables: $X = \{x_1, \ldots\}$
- Bit-vector constants: $Z = \{z_1, \ldots\}$
- Integer terms: $N = \{0, n + m, \ldots\}$

Auxiliary Maps

Pair of maps: $\omega = \langle \omega^b, \omega^N \rangle$ • $\omega^b : X \cup Z \to N$ symbolic bit-width

• $\omega^N : Z \to N$ symbolic value

Not every ω can be used

- Validity: always w.r.t. a given ω
- considering all integer interpretations
- Variant of [Pichora 2003]

 $\begin{aligned} (x_1 \neq z_0 \lor x_2 \neq z_0) &\Leftrightarrow (x_1 \mid x_2 \neq z_0) \\ & \text{with} \\ \omega^b(x_1) = \omega^b(x_2) = \omega^b(z_0) = k \\ & \omega^N(z_0) = 0 \end{aligned}$

 $(z_0 \& x_1) <_{u} x_2$ with $\omega^b(x_1) = \omega^b(x_2) = \omega^b(z_0) = k$ $\omega^N(z_0) = k$

Language for Bit-vectors of Parametric Width

Language

- Unsorted equal, functions, predicates
- Bit-vector variables: $X = \{x_1, \ldots\}$
- Bit-vector constants: $Z = \{z_1, \ldots\}$
- Integer terms: $N = \{0, n + m, \ldots\}$

Auxiliary Maps

Pair of maps: $\omega = \langle \omega^b, \omega^N \rangle$ • $\omega^b : X \cup Z \to N$ symbolic bit-width

• $\omega^N : Z \to N$ symbolic value

Not every ω can be used

- Validity: always w.r.t. a given ω
- considering all integer interpretations
- Variant of [Pichora 2003]

 $(x_1 \neq z_0 \lor x_2 \neq z_0) \Leftrightarrow (x_1 \mid x_2 \neq z_0)$ with $\omega^b(x_1) = \omega^b(x_2) = \omega^b(z_0) = k$ $\omega^N(z_0) = 0$

 $(z_0 \& x_1) <_{u} x_2$ with $\omega^b(x_1) = \omega^b(x_2) = \omega^b(z_0) = k$ $\omega^N(z_0) = k$

 $\mathsf{Bad}\ \omega$

$$\omega^b(x_1) = k, \omega^b(x_2) = k+1$$

Our Goal: proving validity for every bit-width

How to express?

How to solve?

Case Studies

Solving Bit-vector Formulas with Parametric Width

Possibilities

- Bit-blasting
- Specialized solver
- Translation to strings
- Translation to integers

From Bit-vectors to Integers

- Semantics for many operators is already built-in (exceptions: &, |,...)
- Benefit from advancements in integer-solving
- Need also UF and quantifiers
 - Strings with UF and quantifiers are not well-supported

Solving Bit-vector Formulas with Parametric Width

Possibilities

- Bit-blasting
- Specialized solver
- Translation to strings
- Translation to integers

From Bit-vectors to Integers

- Semantics for many operators is already built-in (exceptions: &, |,...)
- Benefit from advancements in integer-solving
- Need also UF and quantifiers
 - Strings with UF and quantifiers are not well-supported

Translation							
		Tr:	BV	\mapsto	NL	4	
$\begin{array}{ccc} x & \mapsto \\ z & \mapsto \end{array}$ $= \\ x <_{u}y \\ x <_{s}y \end{array}$	$\begin{array}{c} \times \\ \omega^{N} \\ \end{array}$ $\begin{array}{c} \leftrightarrow \\ \end{array}$ $\begin{array}{c} \leftrightarrow \\ \end{array}$ $\begin{array}{c} \leftrightarrow \\ \end{array}$ $\begin{array}{c} \leftrightarrow \\ \end{array}$	= x < y $F(k, x) < F(k, y)$		F(k	[13] (, x) =	$k = \omega^{b}(x)$ $F(4, 13)$ $F(4, $	
$x + y$ $x \text{ div } y$ $\sim x$ $x \ll y$ $x \circ y$ $x \mid y$	$\begin{array}{c} \uparrow \\ \uparrow $	$(x + y) \mod 2^{k}$ $y = 0 ? 2^{k} - 1 : x$ $2^{k} - 1 - x$ $(x \cdot 2^{y}) \mod 2^{k}$ $x \cdot 2^{k} + y$ $\sum_{i=0}^{k} 2^{i} \cdot \max(x[i], y]$	<i>i i i i i i i i i i</i>	$x \cdot y$ $x \mod y$ $-x$ $x \gg y$ $x \& y$ $x \oplus y$	$\begin{array}{c} \uparrow \\ \uparrow $	$(x \cdot y) \mod 2^{k}$ $y = 0 ? x : x \mod y$ $(2^{k} - x) \mod 2^{k}$ $(x \div 2^{y}) \mod 2^{k}$ $\sum_{i=0}^{k} 2^{i} \cdot \min(x[i], y[i])$ $\sum_{i=0}^{k} 2^{i} \cdot x[i] - y[i] $	

 $\varphi \mapsto Tr(\varphi)$

Translation							
		Tr:	BV	\mapsto	NL	4	
$\begin{array}{ccc} x & \mapsto \\ z & \mapsto \end{array}$ $= \\ x <_{u}y \\ x <_{s}y \end{array}$	= x < y $F(k,x) < F(k,y)$	$k = \omega^{b}(x)$ $F(4, 13)$ $F(k, x) = 2 \cdot (x \mod 2^{k-1}) - x$					
$x + y$ $x \operatorname{div} y$ $\sim x$ $x \ll y$ $x \circ y$ $x \mid y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x + y) \mod 2^{k}$ $y = 0 ? 2^{k} - 1 : x \div$ $2^{k} - 1 - x$ $(x \cdot 2^{y}) \mod 2^{k}$ $x \cdot 2^{k} + y$ $\sum_{i=0}^{k} 2^{i} \cdot \max(x[i], y[i])$	y 2	$x \cdot y$ $x \mod y$ $-x$ $x \gg y$ $x \& y$ $x \oplus y$	$\begin{array}{c} \uparrow \\ \uparrow $	$\begin{array}{l} (x \cdot y) \mod 2^{k} \\ y = 0 ? x : x \mod y \\ (2^{k} - x) \mod 2^{k} \\ (x \div 2^{y}) \mod 2^{k} \\ \sum_{i=0}^{k} 2^{i} \cdot \min(x[i], y[i]) \\ \sum_{i=0}^{k} 2^{i} \cdot x[i] - y[i] \end{array}$	

 $\varphi \qquad \mapsto \qquad Tr(\varphi) \quad \land \quad \land (0 \leq x < 2^k)$

Translation							
		Tr:	BV	\mapsto	NIA		
$ \begin{array}{ccc} x & \mapsto \\ z & \mapsto \\ = \\ x < y \\ x < y \end{array} $	$\begin{array}{c} \times \\ \omega^{N}(\\ \end{array}$ $\begin{array}{c} + \\ + \\ + \end{array}$ $\begin{array}{c} \times \\ \end{array}$	$(z) \mod 2^{k}$ $=$ $x < y$ $F(k, x) < F(k, y)$)	F(k	13	$k = \omega^{b}(x)$ $F(4, 13)$ $\downarrow 1101 \qquad -3$ $2 \cdot (x \mod 2^{k-1}) - x$	
$x + y$ $x \operatorname{div} y$ $\sim x$ $x \ll y$ $x \circ y$ $x \mid y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x+y) \mod 2^{k}$ $y = 0 ? 2^{k} - 1 :$ $2^{k} - 1 - x$ $(x \cdot 2^{y}) \mod 2^{k}$ $x \cdot 2^{k} + y$ $\sum_{i=0}^{k} 2^{i} \cdot \max(x[i]),$	$x \div y$ y[i])	$x \cdot y$ $x \mod y$ $-x$ $x \gg y$ $x \And y$ $x \oplus y$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$(x \cdot y) \mod 2^{k}$ $y = 0 ? x : x \mod y$ $(2^{k} - x) \mod 2^{k}$ $(x \div 2^{y}) \mod 2^{k}$ $\sum_{i=0}^{k} 2^{i} \cdot \min(x[i], y[i])$ $\sum_{i=0}^{k} 2^{i} \cdot x[i] - y[i] $	

 $\varphi \quad \mapsto \quad Tr(\varphi) \quad \land \quad \land (0 \leq x < 2^k)$

Translation							
			Tr:	BV	\mapsto	UFNIA	
$\begin{array}{ccc} x & \mapsto \\ z & \mapsto \end{array}$	$ \begin{array}{c} \times \\ \omega^{N} \end{array} \\ \mapsto \end{array} $	(z) mod =	p 2(k)			k	$= \omega^{b}(x)$ $F(4, 13)$
$x <_{u} y$ $x <_{s} y$	\mapsto	x < y F(k,x)	< <i>F</i> (<i>k</i> , <i>y</i>))	F(k,	$\begin{array}{c} 13 \\ x \end{pmatrix} = 2 \cdot (x \\ x \end{pmatrix}$	$\begin{array}{c} 1101 \longrightarrow -3 \\ x \mod p2(k-1)) - x \end{array}$
$x + y$ $x \operatorname{div} y$ $\sim x$ $x \ll y$ $x \circ y$ $x y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(x + y) y = 0 ? $p2(k) - (x \cdot p2(y))$ $x \cdot p2(k)$ $ ^{\mathbb{N}}(k, x, y)$	$mod p2(x) - 1 = \frac{p2(k) - 1}{1 - x}$ $y(y) mod = \frac{p2(k) - 1}{y}$ $y(y) mod = \frac{p2(k) - 1}{y}$	k) 1 : x÷y p2(k)	$\begin{array}{c} x \cdot y \\ x \mod \\ -x \\ x \gg \\ x \And y \\ x \oplus y \end{array}$	$ \begin{array}{ccc} & & \mapsto \\ d y & & \mapsto \\ y & & \mapsto \\ \phi & & \mapsto \\ \phi & & \mapsto \end{array} $	$(x \cdot y) \mod p2(k)$ $y = 0 ? x : x \mod y$ $(p2(k) - x) \mod p2(k)$ $(x \div p2(y)) \mod p2(k)$ $\&^{\mathbb{N}}(k, x, y)$ $\bigoplus^{\mathbb{N}}(k, x, y)$

 $\varphi \mapsto Tr(\varphi) \land \land (0 \le x < p2(k)) \land Axioms$

 $\varphi \qquad \mapsto \qquad Tr(\varphi) \quad \land \quad \land (0 \leq x < p2(k)) \quad \land \quad Axioms(p2, \&^{\mathbb{N}}, |^{\mathbb{N}}, \oplus^{\mathbb{N}})$

Axiomatization modes: full, partial, combined, qf

full

$$p2$$
 $p2(0) = 1 \land \forall k.k > 0 \Rightarrow p2(k) = 2 \cdot p2(k-1)$

$$\begin{array}{ll} & \&^{\mathbb{N}} & \forall k, x, y, \\ & k = 1 \Rightarrow & \&^{\mathbb{N}}(k, x, y) = & \min(x[0], y[0]) \land \\ & k > 1 \Rightarrow & \&^{\mathbb{N}}(k, x, y) = & \&^{\mathbb{N}}(k - 1, x[k - 2:0], y[k - 2:0]) + \\ & p2(k - 1) \cdot \min(x[k - 1], y[k - 1]) \end{array}$$

$$\begin{array}{rcl} x[k-2:0] & := & x \mod p2(k-1) \\ x[k-1] & := & (x \div p2(k-1)) \mod 2 \\ x[0] & := & x \mod 2 \end{array}$$

 $\varphi \qquad \mapsto \qquad Tr(\varphi) \quad \land \quad \land (0 \leq x < p2(k)) \quad \land \quad Axioms(p2, \&^{\mathbb{N}}, |^{\mathbb{N}}, \oplus^{\mathbb{N}})$

Axiomatization modes: full, partial, combined, qf

partial – p2

base casesp2(0)weak monotonicity $\forall i \forall j$ strong monotonicity $\forall i \forall j$ modularity $\forall i \forall j$ never even $\forall i \forall x$ always positive $\forall i . p$ div 0 $\forall i . i$

 $p2(0) = 1 \land p2(1) = 2 \land p2(2) = 4 \land p2(3) = 8$ $\forall i \forall j. i \leq j \Rightarrow p2(i) \leq p2(j)$ $\forall i \forall j. i < j \Rightarrow p2(i) < p2(j)$ $\forall i \forall j \forall x. (x \cdot p2(i)) \mod p2(j) \neq 0 \Rightarrow i < j$ $\forall i \forall x. p2(i) - 1 \neq 2 \cdot x$ $\forall i. p2(i) \geq 1$ $\forall i. i \div p2(i) = 0$

 $\varphi \quad \mapsto \quad Tr(\varphi) \quad \land \quad \land (0 \leq x < p2(k)) \quad \land \quad Axioms(p2, \&^{\mathbb{N}}, |^{\mathbb{N}}, \oplus^{\mathbb{N}})$

Axiomatization modes: full, partial, combined, qf

partial – $\&^{\mathbb{N}}$

base case	$\forall x \forall y. \&^{\mathbb{N}}(1, x, y) = \min(x[0], y[0])$
max	$\forall k \forall x. \&^{\mathbb{N}}(k, x, \mathbf{p2}(k) - 1) = x$
min	$orall k orall x. \&^{\mathbb{N}}(k,x,0) = 0$
idempotence	$\forall k \forall x. \&^{\mathbb{N}}(k, x, x) = x$
contradiction	$\forall k \forall x. \&^{\mathbb{N}}(k, x, \mathbf{p2}(k) - 1 - x) = 0$
symmetry	$\forall k \forall x \forall y. \&^{\mathbb{N}}(k, x, y) = \&^{\mathbb{N}}(k, y, x)$
difference	$\forall k \forall x \forall y \forall z. x \neq y \Rightarrow \&^{\mathbb{N}}(k, x, z) \neq y \lor \&^{\mathbb{N}}(k, y, z) \neq x$
range	$orall k orall x orall y. 0 \leq {oldsymbol{\&}}^{\mathbb{N}}(k,x,y) \leq \min(x,y)$

$\varphi \qquad \mapsto \qquad Tr(\varphi) \quad \land \quad \land (0 \leq x < p2(k)) \quad \land \quad Axioms(p2, \&^{\mathbb{N}}, |^{\mathbb{N}}, \oplus^{\mathbb{N}})$

Axiomatization modes: full, partial, combined, qf

- combined = full + partial
- qf = some base cases (quantifier free)

Correctness

- full and combined translations are sound and complete.
- partial and qf translations are sound

Effectiveness

- combined > partial > full > qf
- combined and full can be used for a SAT result
- qf can be used with more solvers

Our Goal: proving validity for every bit-width

How to express?

How to solve?

Case Studies

Case Studies

- Abstracted each set of problems to a parametric bit-width problem
- Translated to integers using the four approaches
- Submitted translations to SMT-COMP UFNIA and QF_UFNIA divisions

Evaluation

- Participants of SMT-COMP 2018 UFNIA division: CVC4, Z3, Vampire
- Limits: 5 minutes run-time, 4GB memory
- Each problem has 4 translations and 3 solvers to run with
- Original problems are UNSAT

Invertibility Conditions [Niemetz et. al 2018]

- 160 Invertibility conditions were found in [Niemetz et. al 2018].
- Many of them were synthesized for bit-width 4.
- All were verified up to 65 bits
- They are used for arbitrary bit-width in CVC4 for quantifier instantiation

Verifying Invertibility Conditions

Goal: Prove Validity of $IC \Leftrightarrow \exists x.\ell[x]$ for every bit-width.

 \leftarrow : Prove that $\exists x.\ell[x] \land \neg IC$ is UNSAT Essentially QF (modulo axioms)

 \Rightarrow : Quantifier cannot be eliminated in the general case.

Conditional Inverses

- We used SyGuS to synthesize conditional inverses.
- A conditional inverse for $\ell[x]$ is a term α such that $\exists x.\ell[x] \Leftrightarrow \ell[\alpha]$
- (\Rightarrow'): $IC \Rightarrow \ell[\alpha]$ Quantifier Eliminated.
- We found 131 Conditional inverses.

Example

 $\begin{array}{ll} true & \Leftrightarrow & \exists x.x+s = t \\ (t \neq 0 \lor s \neq 0) & \Leftrightarrow & \exists x.x \& s \neq t \end{array}$

Verifying Invertibility Conditions

Goal: Prove Validity of $IC \Leftrightarrow \exists x.\ell[x]$ for every bit-width.

 \Leftarrow : Prove that $\exists x.\ell[x] \land \neg IC$ is UNSAT Essentially QF (modulo axioms)

 \Rightarrow : Quantifier cannot be eliminated in the general case.

Conditional Inverses

- We used SyGuS to synthesize conditional inverses.
- A conditional inverse for $\ell[x]$ is a term α such that $\exists x.\ell[x] \Leftrightarrow \ell[\alpha]$
- (\Rightarrow'): $IC \Rightarrow \ell[\alpha]$ Quantifier Eliminated.
- We found 131 Conditional inverses.

Example

$$(t-s)+s=t \quad \Leftrightarrow \quad \exists x.x+s=t \\ \sim t \& s \neq t \quad \Leftrightarrow \quad \exists x.x \& s \neq s$$

Invertibility Conditions: Results

$\ell[x]$	=	\neq	$<_{\rm u}$	$>_{\mathrm{u}}$	\leq_{u}	\geq_{u}	$<_{\rm s}$	$>_{\rm s}$	$\leq_{\rm s}$	$\geq_{\rm s}$
$-x \bowtie t$	✓	~	✓	~	~	~	✓	~	~	✓
$\sim x \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
x & s 🖂 t	\rightarrow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\rightarrow	\rightarrow	×	\rightarrow
x s 🖂 t	\rightarrow	\checkmark	\checkmark	\checkmark	\checkmark	✓	\rightarrow	×	\rightarrow	×
$x \ll s \bowtie t$	\rightarrow	←	\checkmark	\rightarrow	\checkmark	\rightarrow	\rightarrow	×	←	×
$s \ll x \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	←	\checkmark	←	\checkmark
$x >> s \bowtie t$	\checkmark	\checkmark	\checkmark	\rightarrow	\checkmark	✓	\checkmark	\rightarrow	\checkmark	\rightarrow
$s >> x \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \gg_a s \bowtie t$	×	\checkmark	\checkmark	\checkmark	\checkmark	✓	\rightarrow	\checkmark	\rightarrow	\checkmark
$s >>_a x \bowtie t$	\checkmark	\checkmark	←	←	←	←	←	×	←	\checkmark
$x + s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
$x \cdot s \bowtie t$	×	←	\checkmark	×	\checkmark	×	×	×	←	×
x div s 🖂 t	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	←	\checkmark	\checkmark	\checkmark	\checkmark
$s \operatorname{div} x \bowtie t$	\checkmark	←	\checkmark	\checkmark	\checkmark	✓	\checkmark	←	\checkmark	←
$x \mod s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	×	\checkmark	←	\checkmark
$s \mod x \bowtie t$	\rightarrow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	←	\checkmark	←

• 110 out of 160 invertibility conditions verified for any bit-width

- \Leftarrow : 19 and \Rightarrow : 17
- 8 ⇒-directions were proved only when using conditional inverses
- qf mode proved 40

Rewriting Rules for Fixed-width Bit-vectors

Rewriting in Bit-vector Solvers

- Bit-vector formulas are rewritten before bit-blasting
- Rewrites are Implemented for arbitrary bit-width
- Their verification is crucial for soundness

Term Rewriting and All That

Franz Baader Tobias Nipkow

Evaluation

- We synthesized ~2000 "Rewrite Candidates"
 - pairs $\langle A, B \rangle$ of bit-vector formulas/terms that are equivalent for bit-width 4
- Proven rewrites were added as axioms
- Fixpoint was reached after 1 round for formulas and 2 rounds for terms

	Generated	Proved
Formula	435	409
Term	1575	878 (935)

Compiler Optimizations with Alive

```
1 Name: AndOrXor:1733
2 %mp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
5 =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0
```


 $(A \neq 0 \lor B \neq 0) \Leftrightarrow (A \,|\, B \neq 0)$

- We translated 160 correctness conditions to UFNIA
- Verified 88 of them for every bit-width
- Axiomatization modes performed similarly

Required axioms

 $\forall k \forall x. |^{\mathbb{N}}(k, 0, x) = x \qquad \forall k \forall x \forall y. \max(x, y) \leq |^{\mathbb{N}}(k, x, y)$

Conclusion

We Have Seen

- Solving parametric bit-vector formulas is useful, and possible!
- Translation to integers + UF + quantifiers

Why Is This Possible?

- Advances in arithmetic and quantifier solving
- Features of case studies: Real & Rely on basic properties

Future Work

- Satisfiable Benchmarks
- UFNIA proofs for SMTCoq
- Stronger axioms

Conclusion

We Have Seen

- Solving parametric bit-vector formulas is useful, and possible!
- Translation to integers + UF + quantifiers

Why Is This Possible?

- Advances in arithmetic and quantifier solving
- Features of case studies: Real & Rely on basic properties

Future Work

- Satisfiable Benchmarks
- UFNIA proofs for SMTCoq
- Stronger axioms

Thank You !

Many-sorted Logic for Parametric Bit-vectors

Many-sorted First-order Logic?

- Option 1: One sort for all bit-widths
 - No type-checking ⇒ more errors
- Option 2.0: A sort for every integer term: $\sigma_1, \ldots, \sigma_{(2\cdot k+3)}, \ldots$
 - Variables of sort $\sigma_{2\cdot k}$ and σ_{k+k} are not comparable
- Option 2: A sort for every normalized integer term: $\sigma_1, \ldots, \sigma_{(2\cdot k+3),\ldots}$
 - σ_5 and $\sigma_{[k]}$ have disjoint domains in all interpretations

 $0010 + 111 = ? \quad 000 \circ 00 \stackrel{?}{=} 0$