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Why Bit-width Independence?
LLVM [Image from Lattner 2012] Alive [Lopes et al. 2015]

Language + tool for:
Writing optimizations
Verifying them
Generating code

1 Name: AddSub:1604
2 Pre: C == width(%a) - 1
3 %a = ashr %x, C
4 %r = sub 0, %a
5 =>
6 %r = lshr %x, C

1 Name: muldivrem:876
2 Pre: C u>= 1<<(width(C)-1)
3 %r = udiv %x, C
4 =>
5 %c = icmp ult %x, C
6 %r = select %c, 0, 1

1 Name: AndOrXor:1733
2 %cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
5 =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0

AndOrXor:1733 is correct IFF (A 6= 0 ∨ B 6= 0)⇔ (A |B 6= 0) is VALID

Alive proves validity up to a certain bit-width

2 Towards Bit-Width-Independent Proofs in SMT Solvers



Why Bit-width Independence?
LLVM [Image from Lattner 2012] Alive [Lopes et al. 2015]

Language + tool for:
Writing optimizations
Verifying them
Generating code

1 Name: AddSub:1604
2 Pre: C == width(%a) - 1
3 %a = ashr %x, C
4 %r = sub 0, %a
5 =>
6 %r = lshr %x, C

1 Name: muldivrem:876
2 Pre: C u>= 1<<(width(C)-1)
3 %r = udiv %x, C
4 =>
5 %c = icmp ult %x, C
6 %r = select %c, 0, 1

1 Name: AndOrXor:1733
2 %cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
5 =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0

AndOrXor:1733 is correct IFF (A 6= 0 ∨ B 6= 0)⇔ (A |B 6= 0) is VALID

Alive proves validity up to a certain bit-width

2 Towards Bit-Width-Independent Proofs in SMT Solvers



Why Bit-width Independence?
LLVM [Image from Lattner 2012] Alive [Lopes et al. 2015]

Language + tool for:
Writing optimizations
Verifying them
Generating code

1 Name: AddSub:1604
2 Pre: C == width(%a) - 1
3 %a = ashr %x, C
4 %r = sub 0, %a
5 =>
6 %r = lshr %x, C

1 Name: muldivrem:876
2 Pre: C u>= 1<<(width(C)-1)
3 %r = udiv %x, C
4 =>
5 %c = icmp ult %x, C
6 %r = select %c, 0, 1

1 Name: AndOrXor:1733
2 %cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
5 =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0

AndOrXor:1733 is correct IFF (A 6= 0 ∨ B 6= 0)⇔ (A |B 6= 0) is VALID

Our Goal: proving validity for every bit-width

2 Towards Bit-Width-Independent Proofs in SMT Solvers



Outline

Our Goal: proving validity for every bit-width

How to express? How to solve? Case Studies
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Bit-vectors in SMT-LIB 2

Many-sorted First-order Logic
Sorts: σ1, σ2, . . .

Sorted equality, functions, predicates

(x 6=3 000 ∨ y 6=3 000)⇔ (x |3y 6=3 000)

What Do We Need?
Variables ranging over bit-vectors of unspecified bit-width
Constants with unspecified bit-width 0 . . . 0

(x 6=k 0 . . . 0 ∨ y 6=k 0 . . . 0)⇔ (x |ky 6=k 0 . . . 0)

No such thing as “σk”
Many-sorted first-order logic does not seem like a natural fit
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Language for Bit-vectors of Parametric Width
Language

Unsorted equal, functions, predicates
Bit-vector variables: X = {x1, . . .}
Bit-vector constants: Z = {z1, . . .}
Integer terms: N = {0, n + m, . . .}

Auxiliary Maps
Pair of maps: ω = 〈ωb, ωN〉
ωb : X ∪ Z → N symbolic bit-width
ωN : Z → N symbolic value

Not every ω can be used

Validity: always w.r.t. a given ω
considering all integer interpretations
Variant of [Pichora 2003]

(x1 6= z0 ∨ x2 6= z0)⇔ (x1 | x2 6= z0)

with
ωb(x1) = ωb(x2) = ωb(z0) = k

ωN(z0) = 0

(z0 & x1) <ux2

with
ωb(x1) = ωb(x2) = ωb(z0) = k

ωN(z0) = k

Bad ω

ωb(x1) = k, ωb(x2) = k + 1
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Solving Bit-vector Formulas with Parametric Width

Possibilities
Bit-blasting
Specialized solver
Translation to strings
Translation to integers

From Bit-vectors to Integers
Semantics for many operators is already built-in (exceptions: &, |, . . .)
Benefit from advancements in integer-solving
Need also UF and quantifiers

Strings with UF and quantifiers are not well-supported
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Translation
Tr : BV 7→ NIA

x 7→ x
z 7→ ωN(z) mod 2k

= 7→ =
x <uy 7→ x < y
x <sy 7→ F (k, x) < F (k, y)

k= ωb(x)

13 1101 −3

F (4, 13)

F (k, x) = 2 · (x mod 2k−1)− x

x + y 7→ (x + y) mod 2k x · y 7→ (x · y) mod 2k

x div y 7→ y = 0 ? 2k − 1 : x ÷ y x mod y 7→ y = 0 ? x : x mod y
∼ x 7→ 2k − 1− x −x 7→ (2k − x) mod 2k

x <<y 7→ (x · 2y ) mod 2k x >> y 7→ (x ÷ 2y ) mod 2k

x◦ y 7→ x · 2k + y x & y 7→ Σk
i=02i ·min(x [i ], y [i ])

x | y 7→ Σk
i=02i ·max(x [i ], y [i ]) x⊕ y 7→ Σk

i=02i · |x [i ]− y [i ]|

ϕ 7→ Tr(ϕ)
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Translation
Tr : BV 7→ UFNIA

x 7→ x
z 7→ ωN(z) mod p2(k)

= 7→ =
x <uy 7→ x < y
x <sy 7→ F (k, x) < F (k, y)

k= ωb(x)

13 1101 −3

F (4, 13)

F (k, x) = 2 · (x mod p2(k − 1))− x

x + y 7→ (x + y) mod p2(k) x · y 7→ (x · y) mod p2(k)
x div y 7→ y = 0 ? p2(k)− 1 : x ÷ y x mod y 7→ y = 0 ? x : x mod y
∼ x 7→ p2(k)− 1− x −x 7→ (p2(k)− x) mod p2(k)
x <<y 7→ (x · p2(y)) mod p2(k) x >> y 7→ (x ÷ p2(y)) mod p2(k)
x◦ y 7→ x · p2(k) + y x & y 7→ &N(k, x , y)
x | y 7→ |N(k, x , y) x⊕ y 7→ ⊕N(k, x , y)

ϕ 7→ Tr(ϕ) ∧
∧

(0 ≤ x < p2(k)) ∧ Axioms
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Axiomatizations

ϕ 7→ Tr(ϕ) ∧
∧

(0 ≤ x < p2(k)) ∧ Axioms(p2,&N, |N,⊕N)

Axiomatization modes: full, partial, combined, qf

full

p2 p2(0) = 1 ∧ ∀k.k > 0⇒ p2(k) = 2 · p2(k − 1)

&N ∀k, x , y .

k = 1⇒ &N(k, x , y) = min(x [0], y [0])∧
k > 1⇒ &N(k, x , y) = &N(k − 1, x [k − 2 : 0], y [k − 2 : 0]) +

p2(k − 1) ·min(x [k − 1], y [k − 1])

x [k − 2 : 0] := x mod p2(k − 1)
x [k − 1] := (x ÷ p2(k − 1)) mod 2
x [0] := x mod 2
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Axiomatizations

ϕ 7→ Tr(ϕ) ∧
∧

(0 ≤ x < p2(k)) ∧ Axioms(p2,&N, |N,⊕N)

Axiomatization modes: full, partial, combined, qf

partial – p2

base cases p2(0) = 1 ∧ p2(1) = 2 ∧ p2(2) = 4 ∧ p2(3) = 8
weak monotonicity ∀i∀j. i ≤ j ⇒ p2(i) ≤ p2(j)
strong monotonicity ∀i∀j. i < j ⇒ p2(i) < p2(j)
modularity ∀i∀j∀x . (x · p2(i)) mod p2(j) 6= 0⇒ i < j
never even ∀i∀x . p2(i)− 1 6= 2 · x
always positive ∀i . p2(i) ≥ 1
div 0 ∀i . i ÷ p2(i) = 0
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Axiomatizations

ϕ 7→ Tr(ϕ) ∧
∧

(0 ≤ x < p2(k)) ∧ Axioms(p2,&N, |N,⊕N)

Axiomatization modes: full, partial, combined, qf

partial – &N

base case ∀x∀y . &N(1, x , y) = min(x [0], y [0])
max ∀k∀x . &N(k, x , p2(k)− 1) = x
min ∀k∀x . &N(k, x , 0) = 0
idempotence ∀k∀x . &N(k, x , x) = x
contradiction ∀k∀x . &N(k, x , p2(k)− 1− x) = 0
symmetry ∀k∀x∀y . &N(k, x , y) = &N(k, y , x)
difference ∀k∀x∀y∀z. x 6= y ⇒ &N(k, x , z) 6= y ∨&N(k, y , z) 6= x
range ∀k∀x∀y . 0 ≤ &N(k, x , y) ≤ min(x , y)
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Axiomatizations

ϕ 7→ Tr(ϕ) ∧
∧

(0 ≤ x < p2(k)) ∧ Axioms(p2,&N, |N,⊕N)

Axiomatization modes: full, partial, combined, qf

combined = full + partial
qf = some base cases (quantifier free)

Correctness

full and combined translations are sound and complete.
partial and qf translations are sound

Effectiveness

combined > partial > full > qf
combined and full can be used for a SAT result
qf can be used with more solvers
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Case Studies
3 Application Domains

Invertibility Conditions Rewriting Rules Compiler Optimizations
Benchmarks Generation

Abstracted each set of problems to a parametric bit-width problem
Translated to integers using the four approaches
Submitted translations to SMT-COMP UFNIA and QF UFNIA divisions

Evaluation
Participants of SMT-COMP 2018 UFNIA division: CVC4, Z3, Vampire
Limits: 5 minutes run-time, 4GB memory
Each problem has 4 translations and 3 solvers to run with
Original problems are UNSAT
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Invertibility Conditions [Niemetz et. al 2018]

Example
true ⇔ ∃x .x + s = t
(t 6= 0 ∨ s 6= 0)⇔ ∃x .x & s 6= t

160 Invertibility conditions were found in [Niemetz et. al 2018].
Many of them were synthesized for bit-width 4.
All were verified up to 65 bits
They are used for arbitrary bit-width in CVC4 for quantifier instantiation
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Verifying Invertibility Conditions

Goal: Prove Validity of IC ⇔ ∃x .`[x ] for every bit-width.

⇐: Prove that ∃x .`[x ] ∧ ¬IC is UNSAT Essentially QF (modulo axioms)

⇒: Quantifier cannot be eliminated in the general case.

Conditional Inverses
We used SyGuS to synthesize conditional inverses.
A conditional inverse for `[x ] is a term α such that ∃x .`[x ]⇔ `[α]
(⇒′): IC ⇒ `[α] Quantifier Eliminated.
We found 131 Conditional inverses.

Example
true ⇔ ∃x .x + s = t
(t 6= 0 ∨ s 6= 0) ⇔ ∃x .x & s 6= t
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∼ t & s 6= t ⇔ ∃x .x & s 6= t
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Invertibility Conditions: Results
`[x ] = 6= <u >u ≤u ≥u <s >s ≤s ≥s

−x ./ t X X X X X X X X X X
∼ x ./ t X X X X X X X X X X

x & s ./ t Õ X X X X X Õ Õ 5 Õ
x | s ./ t Õ X X X X X Õ 5 Õ 5

x <<s ./ t Õ

Õ

X Õ X Õ Õ 5

Õ

5

s <<x ./ t X X X X X X

Õ

X

Õ

X
x >> s ./ t X X X Õ X X X Õ X Õ
s >> x ./ t X X X X X X X X X X

x >>a s ./ t 5 X X X X X Õ X Õ X
s >>a x ./ t X X

Õ Õ Õ Õ Õ

5

Õ

X
x + s ./ t X X X X X X X X X X
x · s ./ t 5

Õ
X 5 X 5 5 5

Õ
5

x div s ./ t X X X X X

Õ

X X X X
s div x ./ t X

Õ

X X X X X

Õ

X

Õ

x mod s ./ t X X X X X X 5 X

Õ

X
s mod x ./ t Õ X X X X X X

Õ

X

Õ

110 out of 160 invertibility conditions verified for any bit-width
⇐: 19 and ⇒: 17
8 ⇒-directions were proved only when using conditional inverses
qf mode proved 40
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Rewriting Rules for Fixed-width Bit-vectors

Rewriting in Bit-vector Solvers
Bit-vector formulas are rewritten before bit-blasting
Rewrites are Implemented for arbitrary bit-width
Their verification is crucial for soundness

Evaluation
We synthesized ∼2000 “Rewrite Candidates”

pairs 〈A,B〉 of bit-vector formulas/terms that are equivalent for bit-width 4
Proven rewrites were added as axioms
Fixpoint was reached after 1 round for formulas and 2 rounds for terms

Generated Proved
Formula 435 409

Term 1575 878 (935)
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Compiler Optimizations with Alive

1 Name: AndOrXor:1733
2 %cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
5 =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0

(A 6= 0 ∨ B 6= 0)⇔ (A |B 6= 0)

We translated 160 correctness conditions to UFNIA
Verified 88 of them for every bit-width
Axiomatization modes performed similarly

Required axioms

∀k∀x .|N(k, 0, x) = x ∀k∀x∀y .max(x , y) ≤ |N(k, x , y)
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Conclusion
We Have Seen

Solving parametric bit-vector formulas is useful, and possible!
Translation to integers + UF + quantifiers

Why Is This Possible?
Advances in arithmetic and quantifier solving
Features of case studies: Real & Rely on basic properties

Future Work
Satisfiable Benchmarks
UFNIA proofs for SMTCoq
Stronger axioms

Thank You !
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Many-sorted Logic for Parametric Bit-vectors

Many-sorted First-order Logic?

Option 1: One sort for all bit-widths 0010 + 111 =? 000◦ 00 ?= 0
No type-checking ⇒ more errors

Option 2.0: A sort for every integer term: σ1, . . . , σ(2·k+3), . . .

Variables of sort σ2·k and σk+k are not comparable
Option 2: A sort for every normalized integer term: σ1, . . . , σ(2·k+3),...

σ5 and σ[k] have disjoint domains in all interpretations
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