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y Bit-width Inde enc

LLVM [Image from Lattner 2012] Alive [Lopes et al. 2015]

Language + tool for:
C -#=| C Frontend X886 Backend —» X86
/ @ Writing optimizations
Common = a
Fortran —=| Fortran Frontend Optimizer PowerPC Backend | —# PowerPC o Ver|fy|ng them
@ Generating code
Ada - | Ada Frontend ARM Backend —» ARM
1 Name: AddSub:1604 1 Name: muldivrem:876 1 Name: AndOrXor:1733
2 Pre: C == width(Ja) - 1 2 Pre: C u>= 1<<(width(C)-1) 2 Y%cmpl = icmp ne %A, O
3 %a = ashr %x, C 3 Y%r = udiv %x, C 3 Y%cmp2 = icmp ne %B, O
4 Y%r = sub 0, %a 4 => 4 Yr = or Y%cmpl, %cmp2
5 => 5 %c = icmp ult %x, C 5 =>
6 %r = lshr Yx, C 6 Y%r = select Y%c, 0, 1 6 %C = or %A, %B
7 %r = icmp ne %C, O

[AndOrXor: 1733 is correct IFF (A#0VB#0)< (A|B#0) is VALID

Alive proves validity up to a certain bit-width
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Our Goal: proving validity for every bit-width
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Bit-vectors in SMT-LIB 2
Many-sorted First-order Logic

e Sorts: 01,092, . ..

@ Sorted equality, functions, predicates

(x #3000 V y #3 000) < (x |3y #3 000)

What Do We Need?

o Variables ranging over bit-vectors of unspecified bit-width
o Constants with unspecified bit-width 0...0

(x#k0...0Vy #k0...0) & (x |,y #c0...0)

@ No such thing as “o”

@ Many-sorted first-order logic does not seem like a natural fit
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Language for Bit-vectors of Parametric Width

(V) G 2 .2)

@ Unsorted equal, functions, predicates
@ Bit-vector variables: X = {xi,...}
@ Bit-vector constants: Z = {z,...}

o Integer terms: N = {0,n+ m,...} (20 & x1) <uxe

Auxiliary Maps
Pair of maps: w = (w?,wl)
e w?: XUZ— N symbolic bit-width

o wN:Z — N symbolic value

Not every w can be used AUTOMATED REASONING ABOUT HARDWARE DATA TYPES

USING BIT-VECTORS OF SYMBOLIC LENGTHS

e Validity: always w.r.t. a given w
o considering all integer interpretations
@ Variant of [Pichora 2003]
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Solving Bit-vector Formulas with Parametric Width

Possibilities

e Bit-blasting
@ Specialized solver
@ Translation to strings

@ Translation to integers

From Bit-vectors to Integers

@ Semantics for many operators is already built-in (exceptions: &, |,...)

@ Benefit from advancements in integer-solving
@ Need also UF and quantifiers
e Strings with UF and quantifiers are not well-supported
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Translation

Tr: BV — NIA
x = ox k= wP(x)
z =  wY(z) mod 2

F(4,13)

X<uy +H x<y 1101
x<sy = F(k,x) <F(k,y) F(k,x)=2-(x mod 271) — x
X+y — (x+y) mod 2 Xy — (x-y) mod 2*
xdivy — y=0?2"—1:x=y | xmody +— y=07?x : x mody
~ X = 2K—1-x —X — (2 —=x) mod 2
x<<y = (x-2Y) mod2* x>y = (x+=2Y) mod 2*
xoy = x-2k4y x& y o T2 min(x[i], y[i])
x|y = XK 02 max(x[i], y[]) xPy = XK 27 |x[i] = y[i]|

¢ Tr()
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Translation

Tr: BV — UF NIA
X = ox k= wb(x)
z =  w(z) mod p2(k)

F(4,13)

o e
x<yy = x<Yy
x<sy = F(k,x) <F(ky) F(k,x)=2-(x mod p2(k —1)) —
X+y —  (x+y) mod p2(k) Xy — (x-y) mod p2(k)
xdivy +— y=07p2(k)—1: x+y | xmody +— y=0?x : x mody
~ X —  p2(k)—1-—x —X —  (p2(k) — x) mod p2(k)
x<Ky = (x-p2(y)) mod p2(k) x>y —  (x+p2(y)) mod p2(k)
xoy X 2(k)+y x& y = &N(k,x,y)
xly = [(kxy) x®y = @'(kxy)

© N Tr(p) A A <x<p2(k)) A Axioms
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Axiomatizations

® — Tr(p) A AO<x<p2(k)) A Axioms(p2,&N,|N, &)
Axiomatization modes: full, partial, combined, gf

full
p2  p2(0) =1 AVk.k > 0= p2(k) =2 p2(k — 1)

&N Vk,x,y.
k=1= &(k,x,y)= min(x[0], y[O])A
k>1=  &Yk,x,y)= &“(k—1,x[k—2:0],y[k—2:0]) +
p2(k — 1) - min(x[k — 1], y[k — 1])

x[k —2:0] = x mod p2(k —1)
x[k —1] = (x+p2(k—1)) mod 2
x[0] ‘= x mod 2
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Axiomatizations

® — Tr(p) A A< x<p2(k)) A Axioms(p2, &N, N, @N)
Axiomatization modes: full, partial, combined, gf
partial — p2

base cases p2(0) =1Ap2(1) =2Ap2(2) =4 A p2(3) =8
weak monotonicity  ViVj.i < j = p2(i) < p2())
strong monotonicity  ViVj.i < j = p2(i) < p2(j)

modularity Vivj¥x. (x - p2(i)) mod p2(j) #0 =i <j
never even Vivx.p2(i) —1#2-x

always positive Vi.p2(i) > 1

div 0 Vi.i=+p2(i)=0
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Axiomatizations

® — Tr(p) A A< x<p2(k)) A Axioms(p2, &N, N, @N)

Axiomatization modes: full, partial, combined, gf

partial — &Y
base case VxVy. &"(1, x, y) = min(x[0], y[0])
max VkVx. &N (k, x, p2(k ) 1) =
min VkVx. &M (k, x,0) =
idempotence  VAVx. &"(k, x,x) =

contradiction  VkVx.&"(k, x, p2(k) —1—-x)=0

symmetry VkYxVy. &"N(k, x,y) = &"(k, y, x)
difference VKYXVYVz. x #y = & (k,x,2) # y V &"(k,y, z) # x
range VkVxVy.0 < &Y(k,x,y) < min(x,y)
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Axiomatizations

© — Trie) A AO<x<p2(k)) A Axioms(p2, &N, N, ®N)
Axiomatization modes: full, partial, combined, qf

@ combined = full 4+ partial

@ ¢f = some base cases (quantifier free)

Correctness

@ full and combined translations are sound and complete.

@ partial and gf translations are sound

Effectiveness

@ combined > partial > full > qf

@ combined and full can be used for a SAT result

@ ¢f can be used with more solvers
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Our Goal: proving validity for every bit-width

How to express? How to solve? Case Studies
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Case Studies
3 Application Domains

Term Rewriting 4
Go gle and All That n 'S
Images :
Invertibility Conditons & ¢ o Franz Baader

Tobias Nipkow: COMPILER INFRASTRUCTURE

Invertibility Conditions Rewriting Rules ~ Compiler Optimizations

Benchmarks Generation

@ Abstracted each set of problems to a parametric bit-width problem

o Translated to integers using the four approaches
@ Submitted translations to SMT-COMP UFNIA and QF_UFNIA divisions

Evaluation

o Participants of SMT-COMP 2018 UFNIA division: CVC4, Z3, Vampire

o Limits: 5 minutes run-time, 4GB memory

@ Each problem has 4 translations and 3 solvers to run with
@ Original problems are UNSAT
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Invertibility Conditions [Niemetz et. al 2018]

Invertibility Conditions ¢ & Google

An invertibility condition for a literal A(x)
provides the exact conditions under which
A(X) 1s solvable for x.

About this result Feedback

Example

@ frue s dx.x+s=t
@ (t#0Vs#0) e Ixx& s#t

@ 160 Invertibility conditions were found in [Niemetz et. al 2018].

@ Many of them were synthesized for bit-width 4.

o All were verified up to 65 bits

@ They are used for arbitrary bit-width in CVC4 for quantifier instantiation
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Verifying Invertibility Conditions

Goal: Prove Validity of /C < 3x.¢[x] for every bit-width.
<: Prove that 3x.£[x] A =/C is UNSAT Essentially QF (modulo axioms)

=-: Quantifier cannot be eliminated in the general case.

Conditional Inverses

@ We used SyGuS to synthesize conditional inverses.

@ A conditional inverse for /[x] is a term « such that Ix./[x] < ([a]
e (='): IC = ([a] Quantifier Eliminated.
@ We found 131 Conditional inverses.

Example

true & dx.x+s=t
(t#0Vs#0) & Ixx&s#t
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@ A conditional inverse for /[x] is a term « such that Ix./[x] < ([a]
e (='): IC = ([a] Quantifier Eliminated.

@ We found 131 Conditional inverses.

Example

(t—s)+s=t & Ixx+s=t
~t& s#t & Ixx&s#t
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Invertibility Conditions: Results

£[x] = # <u >u <u 2u <s >s Ss s

—x D]t v v v ' v v v v v v
~Xx Dt v v v ' v v v v v v

X & spat > Vv v v v v > X
x|spat - Vv v v v v > X o> X
x<Zspqt >« v > v > > X « X
s <<x DAt v v ' v v v - Vv o« Vv
X>>spat v v ' - v v v o v
S>> XAt v v ' ' v v v v v v
X S>>t X v ' ' v v >V >V
s >>,x DAt v v < < < < < X o« v
X+spat v v ' ' ' v v v v v
x-sp]t X o« v X v X X X « X
xdivs Dt v v v ' ' « v v v v
sdivx Dt Voo« v v v v v« Voo«
xmod s D t v v ' ' ' v X v« v
s mod x >4 t > v ' ' ' v v« v <

@ 110 out of 160 invertibility conditions verified for any bit-width
o «: 19 and =: 17

@ 8 =--directions were proved only when using conditional inverses
@ ¢f mode proved 40
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Rewriting Rules for Fixed-width Bit-vectors

Rewriting in Bit-vector Solvers

@ Bit-vector formulas are rewritten before bit-blasting iIC il
) ) ) ) and All That
@ Rewrites are Implemented for arbitrary bit-width
@ Their verification is crucial for soundness Franiiieodt
Tobias Nipkow:

Evaluation

@ We synthesized ~2000 “Rewrite Candidates”

e pairs (A, B) of bit-vector formulas/terms that are equivalent for bit-width 4
@ Proven rewrites were added as axioms

o Fixpoint was reached after 1 round for formulas and 2 rounds for terms
‘ Generated ‘ Proved

435 409

1575 878 (935)

Formula
Term
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Compiler Optimizations with Alive

Name: AndOrXor:1733

%hempl = icmp ne %A, O

%cmp2 = icmp ne %B, O

%r = or %cmpl, %cmp2
=>

%C = or %A, %B COMPILER INFRASTRUCTURE

%r = icmp ne %C, O

NO O W

(A#0V B +#0) & (A| B #0)

@ We translated 160 correctness conditions to UFNIA
o Verified 88 of them for every bit-width

@ Axiomatization modes performed similarly

Required axioms
VkVX.|N(k, 0,x) = x VkVxVy. max(x, y) < \N(k,x,y)
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Conclusion

@ Solving parametric bit-vector formulas is useful, and possible!

@ Translation to integers + UF -+ quantifiers

Why Is This Possible?

@ Advances in arithmetic and quantifier solving

@ Features of case studies: Real & Rely on basic properties

o Satisfiable Benchmarks
@ UFNIA proofs for SMTCoq

@ Stronger axioms

Term Rewriting

Go g Ie and All That ‘ '

Franz Baader
Tobias Nipkow | £R INFRASTRUCTIRE

Invertibility Conditions & ¢
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Conclusion

@ Solving parametric bit-vector formulas is useful, and possible!

@ Translation to integers + UF -+ quantifiers

Why Is This Possible?

@ Advances in arithmetic and quantifier solving

@ Features of case studies: Real & Rely on basic properties

o Satisfiable Benchmarks
@ UFNIA proofs for SMTCoq

@ Stronger axioms

Term Rewriting

G o g Ie and All That &J

Franz Baader
Tobias Nipkow | £R INFRASTRUCTIRE

Invertibility Conditions & ¢

Thank You !
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Many-sorted Logic for Parametric Bit-vectors

Many-sorted First-order Logic?

@ Option 1: One sort for all bit-widths 0010+ 111 =7 000000 Ly
o No type-checking = more errors

@ Option 2.0: A sort for every integer term: 71, ...,0(2.443), - - -
o Variables of sort g5.x and o1k are not comparable

@ Option 2: A sort for every normalized integer term: o1,...,0(2.443),...
e 05 and oy, have disjoint domains in all interpretations
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