
Alt-Ergo∗

Alt-Ergo is a SMT solver developed by Université Paris-Sud and the OCamlPro company.
Since its first release in 2006, Alt-Ergo has been mainly designed for discharging proof obli-
gations generated by software development frameworks. In particular, some of its features di-
rectly come from the Why/Why3 platforms for deductive program verification (also developed
at Université Paris-Sud) which provide a rich specification language based on a polymorphic
type system à la ML.

In order to directly handle proof tasks from this system, Alt-Ergo has a native input language
for a polymorphic first-order logic and built-in capabilities to reason about parametric user-
defined data-structures. The solver also supports quantifiers reasoning (based on E-matching),
the free theory of equality, the theory of (integer and rational) arithmetic, enumerations, record
data types and the theory of arrays. Recently, a procedure for the theory of floating-point
arithmetic has been integrated. Last but not least, Alt-Ergo integrates a powerful mechanism
for reasoning about associative-commutative function symbols.

In order to work closely with the SMT community, we have implemented in Alt-Ergo 2.2 a
new frontend for a polymorphic conservative extension of the SMT-LIB 2 standard, presented
at SMT2018[3].

Alt-Ergo is written in OCaml. Each module is implemented in a modular way as a set of
(parameterized) modules. Most of the code (except very few parts like the CDCL algorithm and
hashconsing used for maximal sharing) is written in a purely applicative programming style.

Alt-Ergo provides decision procedures for reasoning in the combination of the following
built-in theories: the free theory of equality with uninterpreted symbols, linear arithmetic over
integers and rationals, fragments of non-linear arithmetic, polymorphic functional arrays with
extensionality, enumerated datatypes, record datatypes, associative and commutative (AC)
symbols, floating-point arithmetic [5], and fixed-size bit-vectors with concatenation and ex-
traction operators. Universal quantifiers are handled using the usual e-matching technique,
extended to deal with type variables.

The main differences of Alt-Ergo from other SMT solvers are:

• Shostak combination. The algorithm wich implements the equational reasoning for convex
theories is reminiscent of Shostak combination called CC(X) [2]. Its extension to handle
associative and commutative user-defined symbols is called AC(X) [1].

• Non-linear arithmetic. To reason about non-linear integer arithmetic, Alt-Ergo imple-
ments an algorithm which relies on the extension and collaboration of the AC(X) frame-
work and interval calculus to handle NIA axioms in a built-in way [4].

• Polymorphism. The historical input language of Alt-Ergo is a first-order logic with some
built-in theories and polymorphic data types. We recently added a partial support for the
SMT-LIB 2 standard extended with ML-style prenex polymorphism[3].

• Tableaux-like and CDCL procedures. Since its first versions, Alt-Ergo integrates a Tab-
leaux like SAT solver modulo theories implemented in a purely functional programming
style. We recently worked on a new SAT solver that combines the efficiency of a CDCL
engine with the nice properties of the Tableaux-like solver (construction of a small Boolean
model, interaction with theories and instantiation engine using a small set of literals and
terms).

∗This work is partially supported by VOCaL (ANR-15-CE25-0008) and SOPRANO (ANR-14-CE28-0020)
ANR projects.



• Graphical User Interface. To the best of our knowledge, Alt-Ergo is the only SMT solver
equipped with a graphical user interface[6].

Current team members

• Guillaume Bury, OCamlPro SAS

• Sylvain Conchon, LRI, Université Paris Sud, CNRS, INRIA Saclay–Île-de-France

• Albin Coquereau, OCamlPro SAS

• Mohamed Iguernlala, OCamlPro SAS

• Steven de Oliveira, OCamlPro SAS

Former contributors

• Francois Bobot, CEA List

• Evelyne Contejean, CNRS, INRIA Saclay–Île-de-France, LRI Université Paris Sud

• Claire Dross, AdaCore

• Stephane Lescuyer, Prove&Run

• Alain Mebsout, OCamlPro SAS

• Other contributors (Post-doc, internship) : David Baudet, Denis Cousineau, Kylian Ji,
Frédéric Lang, Arthur Milchior, Samia Nabili, Samuel Risbourg, Thibaut Tachon

For more informations visit our website at https://alt-ergo.ocamlpro.com/ and our
public repo on github : https://github.com/OCamlPro/alt-ergo

References

[1] Sylvain Conchon, Evelyne Contejean, and Mohamed Iguernelala. Canonized Rewriting and Ground
AC Completion Modulo Shostak Theories: Design and Implementation. Logical Methods in Com-
puter Science, 8(3), 2012.

[2] Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and Stéphane Lescuyer. CC(X): Seman-
tic Combination of Congruence Closure with Solvable Theories. Electronic Notes in Theoretical
Computer Science, 198(2):51–69, May 2008.

[3] Sylvain Conchon, Albin Coquereau, Mohamed Iguernelala, and Alain Mebsout. Alt-Ergo 2.2. In
Proceedings of the 16th International Workshop on Satisfiability Modulo Theories, SMT 2018, Ox-
ford, UK, 2018.

[4] Sylvain Conchon, Mohamed Iguernelala, and Alain Mebsout. A collaborative framework for non-
linear integer arithmetic reasoning in Alt-Ergo. In 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2013, Timisoara, Romania, September
23-26, 2013, pages 161–168, 2013.

[5] Sylvain Conchon, Mohamed Iguernlala, Kailiang Ji, Guillaume Melquiond, and Clément Fumex. A
Three-Tier Strategy for Reasoning About Floating-Point Numbers in SMT. In Rupak Majumdar
and Viktor Kunčak, editors, Computer Aided Verification, pages 419–435, 2017.

[6] Sylvain Conchon, Mohamed Iguernlala, and Alain Mebsout. AltGr-Ergo, a Graphical User Interface
for the SMT Solver Alt-Ergo. In Proceedings of the 12th Workshop on User Interfaces for Theorem
Provers, UITP 2016, Coimbra, Portugal, 2nd July 2016., pages 1–13, 2016.

https://alt-ergo.ocamlpro.com/
https://github.com/OCamlPro/alt-ergo

