
The Eos SMT/SMA-Solver: A Preliminary Report

(Extended Abstract)

Maria Paola Bonacina and Giulio Mazzi

Dipartimento di Informatica
Università degli Studi di Verona

Strada Le Grazie 15, I-37134 Verona, Italy, EU
mariapaola.bonacina@univr.it

giulio.mazzi@univr.it

Abstract

This is a preliminary report of work in progress on the development of the Eos
SMT/SMA-solver. Eos is the first solver built from the start based on the CDSAT
(Conflict-Driven SATisfiability) paradigm for solving satisfiability problems modulo theo-
ries and assignments. The latter means that assignments to first-order terms may appear in
the input. CDSAT generalizes MCSAT (Model-Constructing SATisfiability), hence CDCL
(Conflict-Driven Clause Learning), to theory combination. CDSAT reasons in a union of
theories by combining in a conflict-driven manner theory inference systems, called theory
modules. The current version of Eos has modules for propositional logic, equality with
uninterpreted function symbols (UF), and linear real arithmetic. The module for proposi-
tional logic is a MiniSAT-inspired SAT solver. A key feature of MCSAT/CDSAT is theory
conflict explanation by theory inferences: to this end, the Eos module for UF applies con-
gruence closure inferences, and the Eos module for real arithmetic uses Fourier-Motzkin
resolution; both rules may generate new (i.e., non-input) literals. The core solver in Eos
implements the CDSAT transition system and several heuristics used in state-of-the-art
CDCL-based SAT solvers. Some of these heuristics (e.g., random restarts) can be reused
directly in the context of CDSAT, while others are adapted. Eos employs a generalization
of the VSIDS heuristics to make decisions on both propositional and first-order terms, and
the watched literals scheme for both BCP (Boolean Constraint Propagation) and deduc-
tions involving arithmetic terms and uninterpreted terms.

1 Introduction

CDSAT, which stands for Conflict-Driven SATisfiability [3, 4, 5], is a method designed for
the problem of satisfiability modulo theories and assignments (SMT/SMA): given a quantifier-
free formula ϕ and an assignment J of values to subterms of ϕ, determine whether there is a
model of the theories that satisfies ϕ, while respecting the assignments in J . If J is empty,
the problem is an SMT problem. Since most problems from applications involve multiple the-
ories, CDSAT is conceived since the start for reasoning in a union of disjoint theories, that is,
theories that may share only sorts and equality on shared sorts. CDSAT is a generalization
of the MCSAT framework for Model-Constructing SATisfiability [7, 13, 12, 10, 2] to generic
theory combinations. MCSAT integrates the CDCL (Conflict-Driven Clause Learning) proce-
dure for propositional satisfiability (SAT) with a conflict-driven theory satisfiability procedure
(e.g., [20, 16, 6, 14, 15]). Thus, CDSAT is also a generalization of the equality sharing method
for theory combination [23, 22], also known as the Nelson-Oppen scheme, to include in the com-
bination conflict-driven theory satisfiability procedures. This paper is a preliminary description
of ongoing work on the brand new prototype Eos, which is the first SMT/SMA solver born to
implement CDSAT.

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

2 CDSAT: An Exposition

Following the CDCL procedure for propositional satisfiability (SAT) [19, 18], solvers represent
a candidate model by storing on a trail assignments of truth values to propositional variables.
In SMT-solvers that integrate theory solvers with the CDCL procedure, propositional variables
may be genuine propositional variables or abstractions of first-order atoms. MCSAT adds
assignments of natural values to first-order variables (e.g., integer values for integer variables),
and CDSAT generalizes this feature to allow such assignments to first-order terms.

Since SMA problems include assignments to first-order terms, and solvers work with assign-
ments during the search, CDSAT views all data as assignments. A formula ϕ is the abbreviation
of the assignment ϕ← true, logical connectives are seen as function symbols, and formulæ as
Boolean terms. All theories have the sort of Boolean values. A Boolean assignment assigns
a truth value to a Boolean term (e.g., (x > 0)← true), and a first-order assignment assigns
to a first-order term a value of the appropriate sort, as in f(x)← 3 if the function symbol f
has the sort of the integers as output sort. CDSAT treats first-order assignments and Boolean
assignments in a uniform way. With first-order assignments there are two ways to determine the
truth value of an equality: either by assigning it directly (e.g., (x ' y)← true) or by assigning
values to its sides (e.g., {x←0, y←0} makes x ' y true).

Let U denote the union of the theories and T stand for a component theory. An assignment
is a set of distinct pairs u← c, where u is a term in the global signature of theory U and c
is a value. A singleton assignment is a single such pair u← c. All subterms of term u are
said to occur in the assignment. Values are new constant symbols added to the signature of
a theory to name the elements in the domains of interpretation of its sorts (e.g., truth values,
integers, algebraic reals, but also generic values for generic sorts of uninterpreted symbols). A
T -assignment is an assignment where all values come from theory T . A U-assignment, or global
assignment, or assignment for short, may mix values from different theories. We use A for
generic singleton assignments, L for Boolean singleton assignments, J for T -assignments, and
E or H for U-assignments. The flip of L, denoted L, assigns to L the opposite truth value.

In conflict-driven reasoning, nontrivial inferences are performed only to explain conflicts. In
CDCL, propositional resolution is applied to explain the Boolean conflict represented by a clause
and the flips of all its literals. Resolvents can be learned as lemmas in a heuristically controlled
manner. MCSAT generalizes conflict explanation to theory conflicts, requiring that the theory
solver, termed theory plugin, has inference rules that explain theory conflicts. As these inference
rules may generate theory lemmas that contain new (i.e., non-input) terms, termination requires
that these terms come from a finite basis. CDSAT extends this approach from one theory to
many, realizing conflict-driven reasoning in a union of theories. In CDSAT, each component
theory is equipped with an inference system, called theory module, which provides inference
rules for theory conflict explanation. Since conflict-driven reasoning happens in all theories,
and not only in propositional logic, CDSAT regards propositional logic, if present, as one of the
component theories. For termination, CDSAT restricts new terms to come from a finite global
basis built from finite local bases, one per theory. A theory module is an abstraction of a theory
satisfiability procedure; it is defined as a set of inference rules that work with assignments. A
theory module I for theory T has inference rules of the form J `I L, where L is a singleton
Boolean assignment and J is a T -assignment. Since all theories have equality symbols for their
sorts, all modules include inference rules for reflexivity, symmetry, and transitivity of equality,
as well as two inference rules to infer the truth value of an equality when both its sides are
assigned values. CDSAT modules are required to be sound: if J ` L, then J |= L, which means
that every T -model that satisfies J satisfies L.

2

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

Given an input problem written as a global assignment H0, CDSAT works with a trail Γ
initialized with H0 and shared by all theory modules, so that Γ contains a global assignment.
A CDSAT trail is a sequence of distinct singleton assignments that can be either decisions,
or justified assignments, that is, assignments with a justification. A trail can be seen as an
assignment by forgetting the order of its elements. A decision can be either a Boolean or a
first-order assignment. A justified assignment is a generalization of the concept of implied literal
in CDCL: it can be either an input assignment, or the result of a theory inference, or an outcome
of solving a conflict. The justification of an input assignment is empty, and the only first-order
justified assignments are input assignments. All other justified assignments are Boolean. If a
justified assignment depends on a theory inference J ` L, the justification of L is J . A conflict
E is an unsatisfiable subset of the trail: E ⊆ Γ and H0 ∪ E |=⊥. If a conflict E] {L}, where
] denotes disjoint union, is solved by flipping assignment L, that is, by placing L on the trail,
L is a justified assignment with E as justification, as H0 ∪ E] {L} |=⊥ implies H0 ∪ E |= L.

Every assignment on a CDSAT trail has a level: the level of a decision is the successor of
the level of the previous decision; the level of a justified assignment is the maximum among the
levels of the elements of its justification. Therefore, unlike in CDCL, in CDSAT it is not granted
that the levels of the assignments on the trail are in increasing order: a justified assignment L
with justification H and level m may appear after an assignment A of level n, with n > m, if
A does not belong to H. This situation and assignment L are termed a late propagation.

The CDSAT transition system comprises trail rules to search for a model and conflict-state
rules to solve conflicts. The trail rules Decide, Deduce, Fail, and ConflictSolve transform the
trail Γ. Rule Decide expands Γ with a decision u← c, provided this assignment is acceptable
for a module I of a component theory T : Γ does not already assigns to u a value coming from
T ; and if u← c is first-order its addition does not enable an I-inference J ∪ {u← c} `I L for
J ⊆ Γ and L ∈ Γ. In the Boolean case, L is acceptable if neither L nor L are on the trail.
Acceptability also requires that the term u is relevant to theory T : either u occurs in Γ and T
has values for its sort, or u is an equality whose sides occur in Γ, and T does not have values
for their sort; in the latter case I decides the truth value of the equality.

Assume that a theory module inference J `I L applies to the trail as J ⊆ Γ. If L 6∈
Γ, a Deduce transition expands Γ with the justified assignment L. Deduce transitions cover
propagations, including both Boolean Constraints Propagation (BCP) and theory propagations,
and theory conflict explanations. If the T -satisfiability procedure for theory T detects a conflict
in Γ, its module I performs inferences framed as Deduce transitions, until the conflict surfaces
on the trail with an inference J `I L and L ∈ Γ. Deduce can be used in conflict-driven
style, making sure that nontrivial inferences fire only for conflict explanation, or in a forward-
reasoning style that enables nontrivial inferences to fire eagerly. The choice depends on theory
and module, like the notion of what is a nontrivial inference. If Γ contains L, the conflict J∪{L}
is detected: if its level is 0, rule Fail reports unsatisfiability; otherwise, rule ConflictSolve lets
the conflict-state rules take control, resuming the search for a model from the trail they return.

The conflict-state rules UndoClear, Resolve, Backjump, and UndoDecide transform a trail Γ
that contains a conflict. Assume that the conflict includes an assignment A that stands out, as
its level is the maximum in the conflict and A is the only assignment of maximum level in the
conflict. If A is a first-order assignment, rule UndoClear undoes A and clears Γ of all assignments
of level greater than or equal to that of A. If A is a Boolean assignment L, let E be the rest of
the conflict: rule Backjump unrolls the trail to the level of E and adds L with justification E.
In CDSAT endowed with lemma learning [4], rule Backjump is replaced by a more general rule
named LearnBackjump, that can flip any Boolean subset H = {L1, . . . , Ln} of a conflict H]E
to learn clause L1 ∨ . . . ∨ Ln, as H0 ∪ E] {L1, . . . , Ln} |=⊥ implies H0 ∪ E |= L1 ∨ . . . ∨ Ln.

3

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

If the conflict does not contain an outstanding assignment, rule Resolve picks a justified
assignment A in the conflict and unfolds the conflict by replacing A with its justification H.
In the Boolean case this transition rule emulates propositional resolution [5], as the conflict
contains the negation {L1, . . . , Ln} of a conflict clause L1 ∨ . . . ∨ Ln. This process continues
until an outstanding literal emerges in the conflict, so that either UndoClear or Backjump applies.
However, Resolve is inhibited if A is Boolean and its nonempty justification H contains a first-
order decision A′, whose level is maximum in the conflict: if Resolve were authorized in this
case, UndoClear would undo A′, but Decide could reiterate it, leading Deduce to infer A again,
resulting in a loop. In this situation, UndoDecide removes both A and A′ by backtracking
like UndoClear and adds A as a decision. A discussion of the differences between CDSAT and
MCSAT is available [5].

3 The Eos Main Solver

The main solver of Eos implements the CDSAT transition system, and it can be extended with
an arbitrary number of theory modules. The current version of Eos integrates three modules:
the SAT module for propositional logic, the LRA module for linear real arithmetic, and the UF
module that handles uninterpreted function symbols and equality for uninterpreted sorts.

The trail in Eos is a CDSAT trail, where however the justifications of justified assignments
are not stored on the trail. The system saves with every justified assignment L the identifier
of the module responsible for the justification of L. When the justification of L is needed, a
request is issued to that module. In this manner, every module can save this information in
a convenient way relative to the reasoning in its theory and the module implementation. For
a justified assignment L generated by a Deduce transition supported by an inference J `I L,
the module identifier saved with L is that of module I. For a justified assignment L with
justification E generated by a Backjump transition, the module identifier saved with L is that
of the SAT module, because in the current implementation the SAT module builds this kind of
justification. While functional, this solution is not especially flexible, and it is likely to change
in the future.

The main functions of Eos are named check sat and conflict analysis. The check sat

function implements the search for a model of the input problem, covering the trail rules of
the CDSAT transition system. The conflict analysis function implements the conflict-state
rules. The pseudocode of these two functions is provided in the figures labeled Algorithm 1 and
Algorithm 2, respectively.

The check sat function executes a loop, that it exits by firing Fail to report unsatisfia-
bility, or when the assignment on the trail is satisfied. The function tries to propagate some
truth value, by calling the specific propagation methods of the theory modules. This activity
corresponds to Deduce transitions in CDSAT. This process continues until there is no more
value to propagate or a conflict is found in the current assignment. If the conflict is at level
zero the problem is unsatisfiable and the function returns unsatisfiable (rule Fail). Otherwise,
the conflict analysis function will take care of the conflict. If no more propagations are
possible, a decision must be made. The main solver selects a term for a decision based on a
heuristic (see Sect. 3.1), and then it asks the appropriate theory module to assign an acceptable
value to the term. This is the implementation of the Decide rule. The check sat function is
only superficially similar to the analogous function in CDCL. For example, the propagate and
make decision procedures of Eos do not alter the trail themselves, they are only responsible
for calling theory modules that work with the trail.

The conflict analysis function (see the figure labeled Algorithm 2) begins by extracting

4

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

Algorithm 1 check sat

1: function check sat

2: loop
3: propagate() . rule Deduce
4: if conflict then . the propagation has generated a conflict
5: if conflict at level zero then
6: return unsatisfiable . rule Fail
7: else
8: conflict analysis() . rule ConflictSolve

9: else . everything was propagated without conflict
10: if decision order is empty then . every term has a value assigned?
11: return satisfiable . SAT
12: else
13: make decision() . rule Decide

from the trail the “reason” of the conflict, which is what CDSAT simply calls the conflict itself.
Then, it retrieves the highest level among those of the assignments in the conflict: this level
is called the conflict level. Since every level greater than the conflict level is inconsistent, a
backjump to the conflict level is performed right away.

The procedure begins the resolution process between the trail and the conflict, implementing
the Resolve rule. The last element of the trail that is at conflict level is removed from the conflict,
and its justification is added to the conflict in its place (unless it is already there). If one of
the elements of the justification is a first-order assignment that happens to be at the conflict
level, rule UndoDecide is applied. Otherwise, the process continues until the conflict contains a
single assignment at the conflict level. If this oustanding assignment is first-order, an UndoClear
transition is performed. If this oustanding assignment is Boolean, its complement is a Unique
Implication Point (UIP) as in CDCL, and Backjump applies. In the implementation, Boolean
justified assignments are encoded as clauses. Thus, the justified assignment that Backjump
extracts from the conflict is encoded as a clause with the UIP as implied literal. The SAT
module is invoked to store the clause and propagate the UIP.

Eos has an implementation of the LearnBackjump rule [4], but it is under testing and still
subject to change. Another feature of Eos that is implemented, but requires more testing, is a
procedure for conflict minimization, inspired by a technique used in SAT solvers to minimize
the length of conflict clauses [25]. Eos generalizes it to handle also first-order assignments. Eos
can restart the search process by backjumping to level 0. After a certain number of conflicts,
the search is stopped and Eos performs a restart. Similar to MiniSAT [9], Eos employs the
Luby sequence to determine the number of conflicts after which a restart is issued.

3.1 Heuristics for Decisions

When no more deductions are possible, the solver must make a decision. The information
required to determine the acceptability of a decision for a theory module is stored in the module.
The main solver is responsible for calling the appropriate module for every term that requires
a decision. The selection of terms for decisions is based on a generalization of the VSIDS
heuristic [21] to handle both Boolean and first-order terms. Similar to CDCL, the current
implementation of Eos increases the activity of both Boolean and first-order terms only during
conflict analysis.

5

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

Algorithm 2 conflict analysis

1: procedure conflict analysis

2: conflict ← get reason() . get the reason of the conflict
3: conflict level ← get max level(conflict) . higher level of conflict values
4: backjump(conflict level) . undo everything after the conflict
5: while conflict has two or more terms at conflict level do
6: last← pop from trail() . get the last Boolean propagation on the trail
7: if last.level() = conflict level and last is in conflict then . rule Resolve
8: conflict.remove(last) . resolve this value with the conflict
9: . get the justification of this propagation

10: justification← get justification(last)
11: for all Term just in justification do
12: . this propagation is justified by a first order decision at the conflict level?
13: if just is non-Boolean and at conflict level then
14: new value← ¬ trail.get value(last) . flip the value of the propagation
15: backjump one level()
16: add decision(last,new value) . rule UndoDecide
17: return
18: else
19: conflict.add(just) . add just to the conflict

20: . here, the conflict has a single term assigned at the level of the conflict
21: topmost var ← get unassigned(conflict)
22: if topmost var is non-Boolean then
23: backjump one level() . rule UndoClear
24: return
25: clause← create clause(conflict) . learn a new clause
26: bt level← compute backjump level(conflict)
27: backjump(bt level) . rule Backjump
28: learn new clause(clause)

When Eos undoes an assignment u←c by removing it from the trail, it stores it in a cache.
In this manner, if term u gets selected again for a decision, Eos checks whether u appears in
the cache. If this is the case, and term u is relevant to component theory T , the main solver
asks the module for T to determine whether value c is still acceptable. If it is, the next decision
about term u reuses the cached value.

3.2 Knowledge Representation in Eos

Eos stores all the information about sorts and terms in a hash-consed database. A term is
represented by an integer that acts as an index in the database, allowing the system to retrieve
from the database whatever information about the term is required. All formulæ are kept
reduced to a canonical form, so that it is possible to assign the same index to all formulæ that
have the same canonical form. These formulæ are equivalent formulæ written in different ways.
The implementation of this database is based on the one used in Yices [8]. Eos is written in
C++; it accepts problems written in SMT-LIB 2.6 notation [1]; and it can handle problems in
the QF UF, QF LRA and QF UFLRA logics.

6

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

4 The SAT Module

The SAT module handles propositional logic. All Boolean formulæ are reduced to equisatisfiable
conjunctive normal form by applying the Tseitin transformation [26]. The implementation of
the SAT module is based on the MiniSAT solver [9], with a focus on performing Boolean Clausal
Propagation (BCP) very efficiently. This is achieved by using a watched literals scheme that
watches two literals per clause, in order to identify implied literals (also known as unit clauses),
and fully assigned clauses. In addition, the SAT module uses a specialized memory manager to
accelerate the BCP by saving clauses in a compact region in memory.

A unit clause is one where all literals are assigned except one, which is the implied literal.
When a clause is discovered to be a unit clause with implied literal L, if L occurs in the clause
with positive polarity (e.g., L is P), the assignment P← true is added to the trail; if L occurs
in the clause with negative polarity (e.g., L is ¬P), the assignment P ← false is added to the
trail. A fully assigned clause is one such that the trail contains assignments for all its literals.
If a clause is fully assigned the module checks whether the clause is satisfied; if not, it means
that it is a conflict clause and a conflict is raised. The conflict is composed of the conflict clause
and the complements of all its literals.

Learned clauses are removed periodically in order to keep the BCP fast. Similar to Min-
iSAT, the quality of a learned clause is measured by an activity-based heuristic. Those learned
clause whose measure is lower than a given threshold are eliminated by the garbage collection
mechanism of Eos. The garbage collection process removes clauses with low activity and new
terms generated for explaining conflicts that only appears in low-activity clauses. Otherwise,
the system could be overwhelmed by the number of newly introduced terms.

5 The LRA Module

The Fourier-Motzkin algorithm decides the satisfiability of a set of linear disequalities over the
reals, by applying exhaustively Fourier-Motzkin (FM) resolution, and therefore has very high
complexity (see [24], Ch. 12, and [17], Ch. 5). The LRA module of Eos, the LRA plugin of
MCSAT [13], and previous procedures [6, 20, 16], use FM-resolution only to explain conflicts,
like CDCL does with propositional resolution. Thus, these procedures stand to the Fourier-
Motzkin algorithm like CDCL stands to a procedure that decides propositional satisfiability by
applying resolution exhaustively.

Given polynomials t1 and t2 and a free variable x that is not free in t1 and t2, FM-resolution
derives a new relation between t1 and t2:

t1 l1 x, xl2 t2 ` t1 l3 t2 (1)

where l1,l2 ∈ {<,≤}, and l3 is ≤ if both l1 and l2 are ≤, and it is < otherwise. Another
rule is required to handle a special case. Given the polynomials t0, t1, t2, and a free variable x
that is not free in t0, t1, t2, the Disequality Elimination rule can be applied to explain a conflict:

t1 ≤ x, x ≤ t2, t1 ' t0, t2 ' t0, x 6' t0 ` ⊥ (2)

The LRA module propagates truth values to arithmetic formulæ and keeps a set of ac-
ceptable assignments for every real variable in the system. This is accomplished by using
a mechanism similar to the two watched literals scheme of the SAT module. A polynomial
a1 · x1 + · · · + an · xn ' c is watched in a clause that contains all the variables x1 . . . xn plus
the whole formula. When all the variables x1 . . . xn are assigned, it is possible to assign a truth

7

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

value to the formula: this is an evaluation inference in the description of the module as a set
of inference rules [5]. When a truth value is assigned to the formula and all variables x1 . . . xn

are assigned values except for one variable xi, we have a unit constraint [13]. Thus, it is pos-
sible to update the information on the set of acceptable values for xi. For example, given the
assignment {x← 1, (2x < y)← true}, an acceptable value for y must be greater than 2.

For every variable, the module saves lower and upper bounds, a list of disequalities, and
possibly an equality. When two bounds are incompatible, rules (1) and (2) are applied to
explain the conflict, possibly by generating a new term not already present in the input.

6 The UF Module

The UF module handle equalities and inequalities between terms made of uninterpreted sym-
bols, building in the congruence axioms of equality for all non-nullary uninterpreted function
symbols. This module performs propagations by using an extension of the watching literals
scheme analogous to the one used in the LRA module. Every equality clause u1 ' u2 has three
components: the two sides u1 and u2 of the equality, and the Boolean term t that represents
the equality itself. If the two sides are assigned, it is possible to assign a truth value to the
equality. If one of the sides, say u1, and the truth value of the equality are known, it is possible
to glean some information on what is an acceptable value for the other side u2. If the equality
is assigned true, the value of u2 is also determined. If the equality is assigned false, the value of
u1 can be excluded from the set of acceptable values for u2.

Given m-tuples of terms t1 . . . tm and u1 . . . um, where ti and ui have the same sort for all i,
1 ≤ i ≤ m, the following inference rule embodies the congruence axiom for all function symbols
f in the signature:

(ti = ui)i=1...m ` f(t1, . . . , tm) = f(u1, . . . , um) (3)

It is possible that some of the equalities are generated as new terms. This rule is implemented
via another variant of the watched literals scheme [13]. In this case, the arguments of the
function symbol are watched, and when they are all assigned, the module checks that the
congruence property holds.

7 Current and Future Work

Eos is a prototype under active development: the code is at https://gitlab.com/GiuMaz/eos smt,
with the more recent updates under the develop branch. Current work includes a revision of
the conflict analysis procedure to incorporate the LearnBackjump rule [4], and a modification
of the mechanism to select terms for decisions that takes into account that some decisions are
forced. For a first-order term u, the decision u←c is forced if c is the only value left for u (e.g.,
if {u ≤ t, t ≤ u, t← c} ⊆ Γ in arithmetic). Eos will make forced decisions eagerly, reserving
its VSIDS-inspired heuristics to all other decisions, those that are true guesses. The distinction
between forced decisions and true guesses changes the CDCL-inherited notion that the system
makes a decision only when no more propagations are possible, as forced decisions should be
made as soon as possible, together with Boolean propagations.

Another topic for current work is the performance of Eos on QF LRA and QF UFLRA
benchmarks. The implementation of an approach that reduces the need for recomputing values
by using time-stamps [13] is expected to decrease the time spent in computing the values of
polynomials. Eos shows promising results in the QF UF category: given a time limit of 10

8

https://gitlab.com/GiuMaz/eos_smt

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

minutes, it can solve nearly 90% of the problems in this category and it performs especially
well in the eq diamond family of benchmarks [11].

The best architecture for a CDSAT-based SMT/SMA-solver is a main issue for current and
future work, and the development of Eos allows us to investigate this issue without the burden
of legacy code. CDSAT treats all theories and all modules as peers, although propositional
logic still retains a few advantages (e.g., the module inferences infer only Boolean assignments).
In Eos, the SAT solver and the other modules are not exactly peers for historical reasons (the
SAT solver in Eos was developed first and as a stand-alone tool), but this may change in the
future. An MCSAT architecture placing the module for the theory of equality at the center
was preliminarly explored [2]. While inferring only Boolean assignments is not a restriction in
theory, a variant of MCSAT that allows the system to deduce first-order assignments exists [12]
and is implemented in Yices [8]: this extension is future work for both CDSAT and Eos.

A main direction for future work is the extension of Eos with modules for more theories,
such as arrays with extensionality [3, 5], bit-vectors [27, 10], other datatypes, and nonlinear
arithmetic [14, 12], so that it can handle more problems. It seems especially interesting to
consider theories where conflict-driven reasoning is known or expected to have a significant
impact, such as nonlinear arithmetic [14, 12].

Acknowledgments Part of this work was done when the first author was visiting the Com-
puter Science Lab of SRI International, whose support is greatly appreciated. This work was
funded in part by grant “Ricerca di base 2017” of the Università degli Studi di Verona.

References

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories library
(SMT-LIB). www.SMT-LIB.org, 2016.

[2] François Bobot, Stéphane Graham-Lengrand, Bruno Marre, and Guillaume Bury. Centralizing
equality reasoning in MCSAT. In Vijay D’Silva and Rayna Dimitrova, editors, Workshop on
Satisfiability Modulo Theories (SMT-16), 2018.

[3] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Satisfiability modulo
theories and assignments. In Leonardo de Moura, editor, Conference on Automated Deduction
(CADE-26), volume 10395 of LNAI, pages 42–59. Springer, 2017.

[4] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Proofs in conflict-
driven theory combination. In June Andronick and Amy Felty, editors, Certified Programs and
Proofs (CPP-7), pages 186–200. ACM Press, 2018.

[5] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Conflict-driven
satisfiability for theory combination: transition system and completeness. Journal of Automated
Reasoning, in press:1–31, 2019. Available at http://doi.org/10.1007/s10817-018-09510-y.

[6] Scott Cotton. Natural domain SMT: A preliminary assessment. In Krishnendu Chatterjee and
Thomas A. Henzinger, editors, Formal Modeling and Analysis of Timed Systems (FORMATS-8),
volume 6246 of LNCS, pages 77–91. Springer, 2010.

[7] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability calculus. In Roberto
Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Verification, Model Checking and Ab-
stract Interpretation (VMCAI-14), volume 7737 of LNCS, pages 1–12. Springer, 2013.

[8] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer Aided Verifi-
cation (CAV-26), volume 8559 of LNCS, pages 737–744. Springer, 2014.

[9] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editors, Theory and Applications of Satisfiability Testing (SAT-7), volume 9710
of LNCS, pages 502–518. Springer, 2004.

9

www.SMT-LIB.org
http://doi.org/10.1007/s10817-018-09510-y

The Eos SMT/SMA-solver M. P. Bonacina and G. Mazzi

[10] Stéphane Graham-Lengrand and Dejan Jovanović. An MCSAT treatment of bit-vectors. In Martin
Brain and Liana Hadarean, editors, Workshop on Satisfiability Modulo Theories (SMT-15), 2017.

[11] Dejan Jovanović. Model constructing satisfiability calculus – A model-based approach to SMT.
Lecture at the SAT/SMT Summer School, 2015.

[12] Dejan Jovanović. Solving nonlinear integer arithmetic with MCSAT. In Ahmed Bouajjani and
David Monniaux, editors, Verification, Model Checking and Abstract Interpretation (VMCAI-18),
volume 10145 of LNCS, pages 330–346. Springer, 2017.

[13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design and implementation of the
model-constructing satisfiability calculus. In Barbara Jobstman and Sandip Ray, editors, Formal
Methods in Computer Aided Design (FMCAD-13). ACM and IEEE, 2013.

[14] Dejan Jovanović and Leonardo de Moura. Solving non-linear arithmetic. In Bernhard Gramlich,
Dale Miller, and Ulrike Sattler, editors, International Joint Conference on Automated Reasoning
(IJCAR-6), volume 7364 of LNAI, pages 339–354. Springer, 2012.

[15] Dejan Jovanović and Leonardo de Moura. Cutting to the chase: solving linear integer arithmetic.
Journal of Automated Reasoning, 51:79–108, 2013.

[16] Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. Conflict resolution. In Ian P.
Gent, editor, Principles and Practice of Constraint Programming (CP-15), volume 5732 of LNCS.
Springer, 2009.

[17] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point of View. Texts
in Theoretical Computer Science. Springer, 2008.

[18] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Armin Biere, Marjin Heule, Hans Van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 185 of Frontiers in AI and Applications, pages 131–153. IOS Press, 2009.

[19] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[20] Kenneth L. McMillan, Andreas Kuehlmann, and Mooly Sagiv. Generalizing DPLL to richer logics.
In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification (CAV-21), volume
5643 of LNCS, pages 462–476. Springer, 2009.

[21] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In David Blaauw and Luciano Lavagno, editors, Annual
Design Automation Conference (DAC-38), pages 530–535, 2001.

[22] Greg Nelson. Combining satisfiability procedures by equality sharing. In Woodrow W. Bledsoe and
Don W. Loveland, editors, Automatic Theorem Proving: After 25 Years, pages 201–211. American
Mathematical Society, 1983.

[23] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

[24] Alexander Schrijver. Theory of Linear and Integer Programming. Interscience Series in Discrete
Mathematics and Optimization. Wiley, 1998.

[25] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Oliver Kullmann, editor,
Theory and Applications of Satisfiability Testing (SAT-12), volume 5584 of LNCS, pages 237–243.
Springer, 2009.

[26] G.S. Tsetin. On the complexity of derivation in propositional calculus. In A.O. Slisenko, editor,
Studies in constructive mathematics and mathematical logic, volume 2, pages 115–125. Consultants
Bureau, 1970. Presented at the Leningrad Seminar on Mathematical Logic 1966; reprinted in J.
Siekmann and G. Wrightson (eds.), Automation of reasoning, Vol. 2, 466–483, Springer, 1983.

[27] Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer. Deciding bit-vector for-
mulas with mcSAT. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing (SAT-19), volume 9710 of LNCS, pages 249–266. Springer, 2016.

10

	Introduction
	CDSAT: An Exposition
	The Eos Main Solver
	Heuristics for Decisions
	Knowledge Representation in Eos

	The SAT Module
	The LRA Module
	The UF Module
	Current and Future Work

