
An Algorithm Selection Approach for QF FP Solvers

Joseph Scott, Pascal Poupart, and Vijay Ganesh

University of Waterloo, Canada
{joseph.scott,ppoupart,vganesh}@uwaterloo.ca

Abstract

Floating-point numbers are a fundamental data type used in numerous safety-critical
software systems. Due to their popularity, verification of programs consisting of floating-
point calculations is in high demand. Several modern Satisfiability Modulo Theory (SMT)
solvers, such as Z3, CVC4, MathSAT5, now support theories of first-order floating-point
arithmetic. Modern floating-point solvers implement a variety of algorithms to test satis-
fiability of floating-point equations, such as ’eager’ bit-blasting or other ’lazy’ approaches.
Due to the variety of floating-point SMT algorithms, it is very natural to ask which floating-
point SMT algorithm to use for a particular floating-point equation.

In this paper, we initiate solving this problem by an algorithm selection or an algorithm
’portfolio’ over floating-point SMT solvers. Specifically, we consider a variety of supervised
machine learning algorithms to classify and regress runtimes of floating-point SMT inputs
to an array of solvers. We do analysis our generated inputs as well as input benchmarks
from the SMT-COMP ’18.

1 Introduction

Floating-point arithmetic is highly utilized and optimized in modern computer systems. Reports
of modern CPUs capable of hundreds of billions of floating-point arithmetic operations per
second (FLOPs), while modern GPUs are capable of performing hundreds of trillions of FLOPs
[27]. Consequently, scientific software, often with safety-critical components, will leverage the
speed of floating-point in their calculations. Applying verification could potentially have a
significant impact on making floating-point software more robust and dependable.

Modern software verification tools often depend on internal calls to SMT solvers during
the verification process. In the case of floating-point programs, verification tools will query
satisfiability of first-order equations of floating-point arithmetic.

The algorithms used to solve floating-point SMT come in various forms. The SMT solvers
Z3 and CVC4 implement eager bit-blasting, by reducing the floating-point arithmetic to its
circuit and solving an instance of a bit-vector SMT problem [11, 2, 7]. Other solvers such
as MathSAT5 and Colibri, implement ’lazy’ SMT algorithms. MathSAT5 includes a lattice-
theoretic interval propagation approach to deciding satisfiability of floating-point equations
with their algorithm: Abstract Conflict Driven Clause Learning (ACDCL). Colibri, similar to
MathSAT5, uses interval and difference-bound matrices (DBM) propagation with additional
features, such as real linearization and applying simplex solvers.

In this paper, we implement an algorithm selection routine or algorithm ’portfolio’ of the
above mentioned QF FP SMT solvers. We use supervised learning methods such as linear
ridge regression, support vector machines, and random forests. We use features of the counts
of terms, functions, and predicates in the theory of floating-point arithmetic to train a classifier
to SMT-LIB input to a solver.

Contributions

In this paper we make the following contributions:
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1. We present, to the best of our knowledge, the first formulation of algorithm selection
or algorithm portfolio of floating-point SMT. Further, to the best of our knowledge, we
believe this is the first such formulation for any SMT-LIB theory.

2. We provide an empirical evaluation of our approach on benchmarks from SMT-COMP
’18 over QF FP .

3. We introduce a new dataset over QF FP to further diversify the analysis of solver perfor-
mance.

The remainder of this paper is organized as follows: Section 2 provides the necessary back-
ground for this paper by discussing floating-point and supervised learning. Section 3 goes over
the necessary details of the implementation, solvers considered, and datasets considered. Sec-
tion 4 goes over the experimentation of our approach. Section 5 goes over the related literature
of this paper, specifically details on SatZilla [30, 31, 32, 33, 9]. Finally, Section 6 concludes the
paper.

2 Background

In this section, we will go over the necessary background for this paper.

2.1 Floating Point Arithmetic

Floating-Point (FP) numbers are a fundamental datatype used frequently in computer pro-
grams. Internally, FP numbers are composed of a sign bit, and two bit-vectors representing a
mantissa, and an exponent. The real number corresponding to the FP number can be inter-
preted as:

(−1)s(1.m1m2m3..mn)2 × 2e−bias

where s is the sign bit, mi are the bits in the mantissa bit-vector, e is the unsigned integer
value of the exponent bit-vector, and bias is a fixed integer value which is determined based on
the width of the FP number. The leading 1 before the decimal point is implicit and not stored
in the data structure. The subnormal case is when the unsigned integer value e = 0, and the
previously implicit 1 becomes an implicit 0. The sign bit allows for both ±0. If the exponent
bit vector is composed entirely of ones and the mantissa is composed entirely of zeros, then the
FP number denotes ±∞ depending on the sign bit. Furthermore, if the exponent is all ones
and the logical or over all the bits in the mantissa is true, then the FP number denotes Not
a Number (NaN). For portability, the IEEE 754 standard was introduced in 1985 and revised
again in 2008 to provide technical specifications of the behavior of FP arithmetic. The IEEE
754 standard defines several familiar FP arithmetic operators, such as: absolute value, negation,
addition, subtraction, multiplication, division, fused multiply-add, and square root. The IEEE
754 standard requires these operators within the standard to be rounded infinitely precise: the
real value that would result of the operand from the FP inputs needs to be rounded to the
closest FP number with respect to a rounding mode. The IEEE 754 requires equality as well
as other inequalities to respect the real value semantics [20].

Floating-point numbers are convenient for computer programmers due to their speed com-
pared to arbitrary precision numbers. However, FP numbers are unintuitive and frequently
misunderstood, causing surprising and hard to find bugs in software. The unintuitive behavior
arises from the differences between FP and the numbers they attempt to represent—the reals.
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Name Description
N Total number of occurrences of terms in the input

(constants, variables, operators, predicates, assertions.)
Nc Total number of constants
Nv Total number of variables
Nop Total number of operators
Npred Total number of predicates
Nassert Total number of assertions

32− bit? If input contains at least one 32-bit float: 1.0, otherwise: 0.0
64− bit? If input contains at least one 64 bit float: 1.0, otherwise: 0.0
128− bit? If input contains at least one 128 bit float: 1.0, otherwise: 0.0
Variant If the input contains at least one float that is not

32-bit, 64-bit, or 128-bit: 1.0, otherwise 0.0
fp.abs% Nfp.abs/Nops, the percentage of fp.abs over the total number of operands
fp.neg% Nfp.neg/Nops, the percentage of fp.neg over the total number of operands
fp.add% Nfp.add/Nops, the percentage of fp.add over the total number of operands
fp.mul% Nfp.mul/Nops, the percentage of fp.mul over the total number of operands

... ...
fp.eq% Nfp.eq/Npred, the percentage of fp.eq over the total number of predicates
fp.lt% Nfp.lt/Npred, the percentage of fp.lt over the total number of predicates

... ...

Table 1: Table of Features used in all experiments

For example, not all real numbers can be represented by FP numbers (e.g., 0.1 has no finite rep-
resentation in any length binary FP format) so FP arithmetic must incorporate rounding; FP
addition and multiplication are not associative, and the pair do not distribute; FP arithmetic
can overflow or underflow; and FP has several special constants: ±0,±∞, NaN . Furthermore,
from a performance perspective, FP arithmetic can be inconsistent despite being of fixed length:
subnormal FP numbers have been reported to slow computation by up to 100 times for specific
architectures [12, 13].

2.2 Supervised Learning

Supervised learning is a branch of machine learning where a dataset of features is provided with
labels. The task of a supervised learning algorithm is either regression: learning a function
f : X → R; or a classifier: learning a function f : X → C; where X is the set of features
describing an input and C is a finite set of classes over X. The dataset X is split into two,
a training set and a testing set. The supervised learning algorithm either performs regression
over the training set and its labels or learns a classifier. Commonly, a regression algorithm can
be tweaked in its theoretical formulation to be a classification algorithm and vice-versa.

We will briefly enumerate the considered learning algorithms in this paper:

• Linear Regression - learns a linear polynomial with an objective function of minimizing
the mean square error over the training set.

• Linear Ridge Regression - is an extension to Linear Regression that adds the norm of
coefficients of the learned polynomial to the objective function.
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• Support Vector Machines (SVM) - Support Vector Machines is a classifier (with a regres-
sion formulation SVR) that learns a hyperplane to separate classes such that the margin
between points and the hyperplane is maximized.

• (k) Nearest Neighbors - is a classification algorithm (with regression formulations) that
makes classification decisions by sampling the k closest points of the training set.

• Logistic Regression - A classification algorithm that infers the probability of membership
of a class given the features.

• Linear Perceptron - A biologically inspired classifier that learns a linear hyper-plane that
separates two classes. This can be generalized to multi-class by training one class against
all for each considered class.

• Random Forests - Uses an ensemble learning approach over a ’forest’ of several decision
trees. Each decision tree votes on a class or regressed value and is propagated up to a
final decision.

• Neural Networks - A biologically inspired algorithm that emulates a directed acyclic graph
of neurons firing messages to one and another.

For further detail we refer to: [26, 19, 21, 25, 4].

3 Solvers, Implementation, and datasets

In this section, we will discuss the necessary implementation details, solvers considered, and
datasets used.

3.1 Solvers

We will exclusively consider the following list of solvers:

1. Z3 v4.8.0 - A multi-theory open source SMT solver by Microsoft Research [11]. Z3
implements FP SMT by a reduction to arithmetic over bit-vectors for each FP operator.

2. MathSAT5 v5.5.3. A multi-theory SMT solver from FBK-IRST and DISI-UniTN [10].
MathSAT5 implements an Abstract Conflict Clause Driven Learning (ACDCL) [6] algo-
rithm for their FP solver. MathSAT5 additionally provides bit-blasting approaches, but
in this paper we only consider the ACDCL configuration.

3. CVC4 v1.7 - A multi theory open source SMT Solver by Stanford [2]. CVC4 implements
FP SMT similarly to Z3 by bit blasting FPU circuits [7].

4. Colibri v2070 - A proprietary CP Solver with specialty in FP SMT developed by CEA
LIST. [5, 18]

We use a global timeout of 2500 seconds, a time slightly above the cutoff of the 2019 SMT-
COMP. If a solver has a runtime error of any kind or fails to return a ’SAT’ or ’UNSAT’ result,
the solver-input pair is labeled as a timeout.
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3.2 Implementation

We implement our algorithm selection framework as a python package. We use SkLearn [23, 8]
as our machine learning backend.

Features: Supervised machine learning is often only as powerful as its dataset and features
used. Unfortunately, coming up with a proper set of features that captures the semantics of
an input for the theory of QF FP is very challenging. In fact, in our work, we will use basic
features, composed of counts and ratios over the terms of the formula. Furthermore, Table 1
enumerates the considered features of all experiments.

Algorithm Selection as a Classification Problem: Algorithm selection has a straightforward
reduction to classification. For each input, the features from Table 1 are computed. For every
input within the considered datasets, each considered solver solves the input and times are
recorded. The computed feature vector is then labeled as the solver with the shortest runtime.
Inputs that no solver solves within the time limit are discarded.

Algorithm Selection as a Regression Problem: We train a regressor model for each considered
solver using the features from Table 1, with labels of the log runtime. On inputs that timeout
the runtime is labeled as triple the timeout. Selecting a solver is done by: predicting the log
runtime of all solvers and computing the argmax. This methodology is inspired by SatZilla[33].

Training and Evaluation: For each considered dataset or combinations thereof, we partition
into two sets with 50% of all data going into a training set and 50% into a testing set. Training
set features are scaled to zero mean and unit deviance. The testing set is then scaled to the
mean and deviance of the training set. Depending on the considered learning algorithm, 20%
of the training set may be used as a validation dataset to determine the hyperparameters of
the algorithm. Upon conclusion of the validation phase, the model is then retrained with the
returned hyperparameters from validation over the entire training set. Throughout the training
process, the learning algorithm does not have access to the testing set.

3.3 Datasets

We will consider two datasets. First, the 40,300 inputs from the 2018 SMT-COMP on QF FP .
While 40,300 inputs is a great deal of data, over 99.2% of the inputs are solved by all the solvers
within 3 seconds, as they are intended as unit tests for the solvers. For the second dataset,
we use a randomly generated dataset over QF FP . This dataset is intended to provide more
diversity in experiments and input difficulty than what is currently available.

Random QF FP SMT Generation procedure: The input will be comprised of entirely
32-bit floats or 64-bit floats and is selected at the start uniformly at random. The number
of variables is chosen uniformly at random in the interval [1, 20]. The input consists of [1, 20]
assertions with each asserting an Abstract Syntax Tree (AST) over floating-point arithmetic.
The root node consists of one of the predicates selected uniformly at random. Depending on
the arity of the selected predicate, the required number subtrees are generated with roots of
floating-point operators chosen uniformly at random. This process is repeated for a fixed net
depth of [2, 6] chosen uniformly at random to which floating point variables selected uniformly
at random fill out the leaf nodes of the AST.

4 Empirical Analysis

In this section, we present an empirical analysis of our algorithm selection framework. More
specifically, we try to answer the following research question:
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Figure 1: Cactus Plot of Experiment #1

Research Question: Can we use machine learning and algorithm selection to improve over
any standalone SMT Solver for QF FP? How close does our proposed, yet minimalistic, feature
set get to perfect algorithm selection for our benchmarks?

4.1 Evaluation Techniques

We will use two types of figures to visualize our results

1. Cactus Plot – Demonstrates a solvers performance over a set of benchmarks, with the
X-axis denoting the total number of solved inputs and the Y-axis denoting the solver
timeout in seconds. A point (X, Y) on a cactus plot can be interpreted as: the denoted
solver can solve X of the inputs from the benchmark set where each input has a timeout
of Y seconds.

2. Confusion Matrix – A matrix that tallies all predictions of a classifier. Each row is labeled
as a solver, denoting that the learning algorithm predicted the corresponding solver, and
each column labeled as a solver, denoting the solver that solved the input the fastest.
Furthermore, the number in the matrix M [s1][s2] is the tally of how often the machine
learning algorithm predicted solver s1 would have the fastest running time while solver s2
had the fastest running time. A perfect confusion matrix would be entirely zeros except
for the main diagonal.

In all cactus plots we will further consider the following baselines to compare against:

1. Each solver individually

2. Random Solver Selection

3. An Oracle – Perfect Algorithm Selection, also referred to as the virtual best solver in
various literature
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Figure 2: Cactus Plot of Experiment #2

Furthermore, for plotting clarity, we use unmarked solid lines to denote original solvers,
marked lines with circles to indicate Random Selection or Oracle Selection, marked lines with
crosses to denote regression based algorithms, and marked lines with stars to denote classifica-
tion based algorithms.

A learned algorithm selection tool would ideally improve on all considered solvers and ran-
dom selection. Further, it additionally should be competitive with an Oracle.

All experiments were performed on a CentOS V7 cluster of Intel Xeon Processor E5-2683 at
2.10 GHz. Each run of a solver was configured to be restricted to 8GB without parallelization.
Otherwise, solvers were run as close to their default configurations as possible. We observe
prediction times to take a few milliseconds at most and are not included in timing analysis.

Lines in cactus plots may be cropped off for readability of figures. Plot lines will only be
cropped off if the solver/algorithm selection tools are not ’competitive’ and trails behind by
several thousand inputs.

4.2 Experiment #1: Training and Testing over the SMT-COMP 2018
dataset

We will first consider the 40,300 inputs from the SMT-COMP in 2018. We first randomly
partition the dataset into 20,150 inputs for training and 20,150 inputs for testing. We want
first to make note that despite the dataset being relatively large, 99% of the inputs are solved
within 3 seconds. We use the training method described in Section 3.2.

Figure 1 presents the Cactus plot from this experiment. We observe that most learned
algorithm selection models outperform the single solver benchmarks, and all outperform the
random benchmark. We find that Linear Ridge Regression is the most competitive with the
Oracle selector. This is consistent with [33], who exclusively used ridge regression in practice.1

1NN Classify picks Z3 every time!
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Figure 3: Cactus Plot of Experiment #3

Further, there is a notably low margin between the best performing learned algorithm
selection model and the Oracle. Within this dataset, the oracle is only able to solve ten
additional instances. This margin will increase in later experiments.

Figure 5 (top left) presents the confusion matrix of linear ridge regression. The confusion
matrix is unsurprising due to the strong performance of Z3 on this dataset and is by far the
best in terms of accuracy across all experiments.

4.3 Experiment #2: Training and Testing over the Randomly Gen-
erated dataset

We will next consider the 10,000 2 inputs from the randomly generated dataset. We form a
training set of 3,951 inputs and a testing set of 3,952 inputs. We use the training method
described in Section 3.2.

Figure 2 presents the Cactus plot from this experiment. We observe that most learned
algorithm selection models outperform the single solver benchmarks, and all outperform the
random benchmark. We observe the Neural Network with Regression, closely followed by
Linear Regression and Linear Ridge Regression are the most performant. This further remains
consistent with [33] and the use of linear ridge regression.

The margin of improvement between the best algorithm selection formulation and the Oracle
is much larger than observed in Section 4.2. There are more than 250 additional inputs that
were solved by the oracle.

Figure 5 (top right) presents the confusion matrix for the neural network. The confusion
matrix is the worst across all experiments and suggests poor classification as the higher tallies
do not necessarily fall on the main diagonal, despite a successful looking cactus plot. This
further motivates for the advancement of algorithm selection on more diverse datasets such as
this.

22,095 were discarded as no considered solver was able to solve them within the 2,500 second timeout.
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Figure 4: Cactus Plot of Experiment #4

4.4 Experiment #3: Training over the Randomly Generated Dataset,
Testing over the SMT-COMP 2018 dataset

In this experiment, we train on one domain of QF FP problem class and evaluate the learned
models on another. We train on the entire 7,905 inputs from the random dataset and evaluate
the learned models over the entire 40,300 inputs from the SMT COMP ’18 dataset.

Figure 3 presents the Cactus plot from this experiment. We observe that most learned
algorithm selection models outperform the single solver benchmarks, and most outperform the
random benchmark. We observe a fairly surprising result that kNN− regression outperforms
all learned algorithm selection models, which is inconsistent with [33].

Figure 5 (bottom left) presents the confusion matrix for kNN− regression. The confu-
sion matrix looks much more successful than the previous experiment in Section 4.3, with the
majority of the tallies falling on the main diagonal.

The Inverse of this Experiment: Training over SMT-COMP ’18 dataset and testing
over the Randomly Generated dataset does not result in a learned algorithm selection that
beats random algorithm selection nor any standalone solver. This is not overly surprising as in
SMT-COMP ’18 there is a heavy favor in Z3 and learned models almost exclusively predict Z3,
despite it being the worst standalone solver over that dataset.

4.5 Experiment #4: Train over both, Test over both

We combine the two considered datasets, to form a cumulative dataset of 50,300 inputs. We
split each by 50% to compose the training and testing set. That is, 20,150 from SMT-COMP
’18 and 3,951 from the Random Set to form a training set, and the remaining 20,150 from
SMT-COMP ’18 and 3,952 from the Random Set to form the testing set.

Figure 4 presents the Cactus plot from this experiment. We observe that most learned
algorithm selection models outperform the single solver benchmarks, and all outperform the
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Z3 MathSAT5 CVC4 Colibri
Z3 20009 13 0 6
MathSAT5 4 8 2 36
CVC4 8 4 6 16
Colibri 1 4 2 30

Z3 MathSAT5 CVC4 Colibri
Z3 7 8 21 32
MathSAT5 14 142 205 479
CVC4 57 445 599 1007
Colibri 24 133 169 610

Z3 MathSAT5 CVC4 Colibri
Z3 34365 15 2 0
MathSAT5 5 9 1 22
CVC4 2878 10 12 33
Colibri 2801 30 17 100

Z3 MathSAT5 CVC4 Colibri
Z3 19999 62 38 77
MathSAT5 51 339 265 812
CVC4 31 168 536 998
Colibri 39 36 822 628

Figure 5: Confusion Matrix of top performing learning algorithm for Experiment #1 (top left),
#2 (top right), #3 (bottom left), and #4 (bottom right)

random benchmark. We observe the Neural Network with Regression, closely followed by
Linear Regression and Linear Ridge Regression are the most performant. This further remains
consistent with [33] and the use of linear ridge regression.

Figure 5 (bottom right) presents the confusion matrix for the learned neural network. The
confusion matrix looks much more successful, similar to Section 4.4 than the experiment in
Section 4.3, with the majority of the tallies falling on the main diagonal.

5 Related Work

There have been several works of algorithm selection in several domains, such as SAT solvers
by SatZilla [30, 31, 32, 33, 9]. SatZilla has a vast literature and a great deal of success in the
SAT competition [22]. The success of SatZilla is the primary inspiration for this paper. To
the best of our knowledge, we are the first to consider algorithm selection for QF FP or any
other SMT theory. SatZilla uses a diverse feature set over propositional SAT. Their features
include metrics over variables clause graphs, horn clauses, solver probing, etc. In contrast, our
formulation leaves a lot to be desired, but unclear to us on how to properly expand it.

Alternatively to propositional SAT, algorithm selection has been considered in other domains
[3], such as quantified boolean formulas [24, 17], Constraint Solving [14, 1, 16], answer set
programming [15], and other NP−Hard problems [28, 29]

6 Conclusions and Future Work

In this paper, we presented an algorithm section or algorithm portfolio styled approach to
floating-point SMT. We considered a variety of classification and regression algorithms used
in supervised machine learning. We discovered, that with even straightforward features, an
algorithm selection approach can outperform any given singular solver, despite low classification
accuracy.

We believe there to be a great deal of future work in this space. Algorithm selection on SMT
theories other than QF FP could be very practical, especially for theories with high diversity
core algorithms. Furthermore, on diverse datasets, considered classifiers have surprisingly low
accuracy. We believe this can be improved with more refined features, but it is unclear to us
what those would be. Further progress on deriving feature sets from SMT-LIB inputs could
open the door for several research projects in automated reasoning and machine learning.
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