
Constrained Optimization Benchmark for Optimization

Modulo Theories: a Cloud Resource Management Problem

Extended Abstract

Mădălina Eraşcu12 Răzvan Meteş1

1 Department of Computer Science, West University of Timişoara, Romania
2 Institute e-Austria Timişoara, Romania

{madalina.erascu,razvan.metes}@e-uvt.ro

Abstract

The development, assessment, and comparison of Optimization Modulo Theories
(OMT) algorithms and tools heavily depends on benchmarking. To the best of our knowl-
edge, there is no benchmark environment for OMT, much less one which bears any relation
to the number of distinct problem features. This paper proposes a scalable linear, respec-
tively non-linear, constrained optimization problem that is suitable for benchmarking OMT
solvers. By comparing two state-of-the-art OMT solvers, the benchmarking environment
is demonstrated.

1 Introduction

Satisfiability Modulo Theories (SMT) became a popular research area since it has proven its
practical application in various domains, for instance in program verification [5] and synthesis
[12], security [20], neural networks verification [13]. SMT solvers implement the latest develop-
ments in the area (see SMT competition1) and provide mature algorithms for reasoning with
boolean combinations of constraints over decidable theories in a push-button manner.

Standard decision procedures for SMT have been extended with optimization features, lead-
ing to Optimization Modulo Theories (OMT). OMT extends SMT solving with optimization
procedures in order to find variable assignments that define an optimal value for objective func-
tion(s) under all models of a formula. OMT solvers [16, 6, 19] showed their applicability in task
planning [15], Wireless Sensor Networks [14], worst-case execution time computation [11].

In our recent work [17, 10], motivated by the trend that organizations are likely to move
their business in the Cloud2, we studied the following problem. Given the diversity of Cloud
Providers (CPs), e.g. Amazon Web Services3, Google Cloud4, Azure5, which CPs can accomo-
date my component-based application at a fair budget such that my application performance
requirements are fulfilled? To answer the question, we solved a resource management problem,
that is: (1) mapping the components to VMs such that the computing, storage, networking
requirements of the application are fulfilled, and (2) selection of VMs offers which minimize the
cost. We formulated it as a linear constrained optimization problem with variables of boolean
and integer/real type. The problem is related to the bin-packing problem, however (1) the
placement of items in bins is limited by constraints, (2) the capacity of bins is not fixed (it de-
pends on the VMs offers), (3) the number of items is not known (it depends on the constraints

1https://smt-comp.github.io
2https://ec.europa.eu/digital-single-market/en/cloud
3https://aws.amazon.com/
4https://cloud.google.com/
5https://azure.microsoft.com/en-us/

https://smt-comp.github.io
https://ec.europa.eu/digital-single-market/en/cloud
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/


Constrained Optimization Benchmark Eraşcu and Meteş

on the number of instances), (4) the smallest price is not necessarily obtained by using the
smallest number of bins. We tackled it with approximate methods (evolutionary algorithms)
since the exact methods (constrained programming and SMT solving) did not scale [17]. Note
that the approximate methods, preferred by the Cloud Computing community when solving
optimization problems, do not offer a guarantee that the exact optimum was reached, nor
how far from the optimum the provided solution is. In [10], we overcame the scalability issue
by proposing a heuristic combining clique detection and symmetries breaking tailored for our
problem. As a result the timings improved by at least 2 orders of magnitude.

Motivated by our previous work, in this paper we present our work in progress on an OMT
benchmark proposal. We provide two hard constrained optimization problems, linear and non-
linear6, respectively, that are scalable with respect to the problem dimension. The benchmark
is constructed on the basis of the problem of component-based applications deployment in the
Cloud. The problem dimension is determined by the number of VMs offers, the number of ap-
plication components instances, and the number of hardware/software constraints. We consider
several encodings of the variables involved in the constrained optimization problem which are
suitable in the respective context.

The contributions of the papers are as follows: (1) additionally to [17, 10], we introduce
a non-linear formulation to the constrained optimization problem (Section 2); (2) we propose
basic benchmarking conventions in order to provide a thorough basis for reproducible and
comparable benchmarking tests (Section 4); (3) for demonstration purposes, two state-of-the-
art OMT solvers are tested on different variable encodings and increasing problem dimension
(Section 5).

Related Work. The SMT community established and made available to the research com-
munity a large library of benchmarks for SMT solvers7. Benchmarks for OMT solvers exist; to
name a few: (1) synthetic benchmarks from [2]: these benchmarks consider the parameterized
version of Wordpress application (number of component instances deployed and number of VM
offers) in order to address scalability issues. Additionally to these benchmarks, we consider
also other component-based applications which imply a wider class of constraints. Moreover,
we experiment with different variable encodings for these constraints. (2) industrial placement
fixer benchmarks coming from a sub-stage of the physical design stage of the Computer-Aided
Design as well as the crafted placement fixer benchmarks diversifying the former mentioned
instances of the generic problem of [18]. (3) CELAR radio frequency assignment problems [7].
However, there is not exist a public benchmark library for OMT, nor specific OMT constructs
in the SMT-LIB standard which would allow an initiative similar to SMT competition. Our
work, through the benchmark proposed, motivates and proposes the extension of the SMT-LIB
standard and the necessity of a benchmark library or sublibrary for OMT.

There also exists related research applying SMT solving for constrained optimization prob-
lems related to ours, see e.g. [8, 4, 2], however, for the lack of space we do not detail it here.

2 Problem Description

In [17, 10], we proposed the formalization of constrained optimization problems coming from the
optimal deployment of component-based applications in the Cloud. We considered component-
based applications composed of N components Ci (i = 1, N) imposing various structural con-
straints and having certain hardware characteristics, and a set of M VMs, Vj (j = 1,M).

6The number of non-linear constraints is, however, reduced compared to the linear ones (see Section 2).
7http://smtlib.cs.uiowa.edu

2

http://smtlib.cs.uiowa.edu


Constrained Optimization Benchmark Eraşcu and Meteş

The problem we want to solve is to find a mapping (of components to VMs) which: (1) satis-
fies the constraints induced by the interactions between components; (2) satisfies the hardware
requirements of all components, and (3) minimizes the purchasing price. The mapping is en-
coded like a set of binary variables, aik ∈ {0, 1} for i = 1, N , k = 1,M , interpreted as follows:
aik is 1 if Ci is assigned to Vk, and it is 0 otherwise. The minimization of the leasing price is
expressed as the linear constraint

∑M
k=1 VPk. Note that some VPk could be 0 if no component

is assigned to Vk.
For a self-contained presentation, we recall the constraints which might appear in the for-

mulation of the optimization problem. Exemplification of them is in [10].
Structural constraints are of two types: general and application-specific. The general con-

straints are always considered in the deployment model and are related to basic allocation rules.
For example, each component Ci must be allocated to at least one VM:

N∑
i=1

aik ≥ 1 k = 1,M (1)

except those being in Exclusive Deployment relation (see below).
We identified two main types of application-specific constraints regarding the components:

(1) interactions (conflict, co-location, exclusive deployment) and (2) number of instances
(require-provide, full deployment, deployment with a bounded number of instances). The
application-specific constraints that we consider in the following are inspired by the case studies
we consider (Secure Web Container, Secure-Billing Email, Oryx2 and Wordpress), however,
they cover a large set of interactions which can be encountered in most component-based ap-
plications.
Conflict : two or more components cannot be deployed on the same VM. The information con-
cerning the conflicts between components is stored in the conflict matrix Rij ∈{0,1}, i, j = 1, N
(Rij = 1 if Ci and Cj are conflictual). The constraint written as set of quadratic expressions
(with respect to the elements of the assignment matrix) is:

N∑
i=1

N∑
j=1

aikajkRij = 0, k = 1,M (2)

This can be rewritten also as a set of linear expressions (w.r.t. the elements of the assignment
matrix):

aik + ajk ≤ 1, k = 1,M, ∀i, j s.t. Rij = 1 (3)

This second variant leads to a larger number of constraints (MN2 instead of M) but it al-
lows the use of linear programming methods, unlike the previous one which requires quadratic
programming.
Co-location: two or more components should be deployed on the same VM. The information
concerning this type of dependence can be stored in a dependency matrix Dij ∈ {0, 1},∀i, j=
1,N (Dij = 1 if Ci and Cj should be deployed on the same virtual machine).The constraint can
be formulated as:

aik = ajk, k = 1,M, ∀i, j s.t. Dij = 1 (4)

Exclusive deployment : two or more components cannot be deployed in the same deployment
plan:

H(

M∑
k=1

ai1k) +H(

M∑
k=1

ai2k) + ...+H(

M∑
k=1

aiqk) = 1, (5)

where H is the Heaviside-like function defined as: H(u) = 1 if u > 0 and H(u) = 0 if u = 0.
Require-provides: this is a special case of interaction between components: when one com-
ponent requires some functionality offered by other components. Such an interaction induces

3



Constrained Optimization Benchmark Eraşcu and Meteş

constraints on the number of instances corresponding to the interacting components as follows:
(1) Ci requires (consumes) at least nij instances of Cj and (2) Cj can serve (provides) at most
mij instances of Ci. This can be written as:

nij

M∑
k=1

aik ≤ mij

M∑
k=1

ajk, nij ,mij ∈ N. (6)

A related case is when for each set of n instances of component Ci a new instance of Cj
should be deployed. This can be described as:

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n, n ∈ N (7)

This constraint cannot be deduced from (6) because of the following. Taking in (6) nij = 1, we
obtain an expression meaning that for mij instances of Cj one should have at least one instance
of Ci (but there can be more). (7) is more specific requiring exactly one instance of Cj .
Full deployment : a component Ci must be deployed on all VMs (except on those which would
induce conflicts:

M∑
k=1

(aik +H(
∑

j,Rij=1

ajk)) = M (8)

Deployment with bounded number of instances: the number of instances corresponding to a set
of deployed components, C, should be equal, greater or less than some values:∑

i∈C

M∑
k=1

aik 〈op〉 n, 〈op〉 ∈ {=,≤,≥}, n ∈ N (9)

The hardware constraints specify the amount of resources required by the components assigned
to a VM and assure that they do not overpass the VM characteristics as offered by the CPs.

N∑
i=1

aik ·HRi
t ≤ vm

HRt

k , vmHRt

k ,HRi
t ∈ R+, k = 1,M, t = 1, L (10)

where vmHRt

k is used to store a CPs offer in terms of number of CPUs, memory, storage, while

HRi
t stores the component i requirements in terms of of number of CPUs, memory, storage.
Besides the above constraints, for the correctness of the formalization, we also had to encode

the CPs offers and to link them with the components hardware constraints. At this aim, we
introduced the variable vmType which identifies the CPs offers (vmTypek ∈ {1, . . . ,ON}, where
ON is the number of CP offers). The link between the vmType and the allocation matrix a is
done by the following constraints:

ON∨
h=1

vmTypek = h (11)

N∑
i=1

aik≥1∧vmTypek=h =⇒VPk=PriceOfferh∧vmHR1

k =HR
Offerh
1 ∧. . .∧vmHRL

k =HR
Offerh
L (12)

where h = 1,ON; HR
Offerh
t represents the CPUs number, memory size and storage size for

offer h (t = 1, L). For example, for the first offer (h = 1) corresponding values for (PriceOffer1 ,

HR
Offer1
1 , HR

Offer1
2 , HR

Offer1
3 ) are (9.152$, 64, 488MB, 8GB). The formula above also specifies

that the price of a VM contributes to the final price only if the machine is occupied. If the
machine is not occupied, then it does not contribute to the final total leasing price. This is
expressed by the following constraint:

N∑
i=1

aik = 0 =⇒ VPk = 0, k = 1,M (13)

Note that the above constraints determine two types of constrained optimization problems:
(1) linear (2) non-linear (when (2) is used instead of (3)).

4



Constrained Optimization Benchmark Eraşcu and Meteş

3 Satisfiability and Optimization Modulo Theories

Satisfiability Modulo Theories (SMT) is about the satisfiability of first-order formulas with
respect to some background theory. It enhances the boolean satisfiability problem (SAT) with
theories like real and integer numbers, bitvectors, arrays and so on. The logics that one could
use are characterized, for instance, by the linearity/non-linearity of the arithmetic and the
presence/absence of quantifiers. In this paper, given the nature of our constraints, we used the
following logics: (1) QF LIA / QF NIA; (2) QF LRA / QF NRA; (3) QF BV. The SMT-LIB format [3],
the common input format for SMT solvers, defines the syntax of the above mentioned logics.

Optimization Modulo Theories (OMT) seek to find a variable assignment which optimizes a
certain objective function (single-criteria optimization) or a combination of multiple objective
functions (multi-criteria optimization) under all models of a formula. The existing OMT solvers
are mainly built on top of the existing SMT solvers. For example, OptiMathSAT [19] uses an
inline architecture in which the SMT solver MathSAT58 is run only once and its internal SAT
solver is modified to handle the search for the optima. Symba [16] and νZ [6]9 both are based
on an offline architecture in which the SMT solver Z3 [9] is incrementally called multiple times
as a black-box. In our experiments, we did not used Symba since it is not maintained anymore.

Subcases of OMT arise when the constraints or the optimization function are pseudo-boolean
or cardinality constraints. Therefore, we have MaxSMT (pseudo-Boolean optimization) where
the optimization problem has the form:

minimize Cost(x1, x2, ..., xn) subject to
∧
i

∑
j

aijxj ≥ bi

The cost function is typically defined as a linear function of the pseudo-Boolean variables, that
is Cost(x1, x2, ..., xn) =

∑
j

cjxj , ∀j, cj ∈ Z.

Definition 1. A pseudo-Boolean constraint has the following form:∑
j

ailj . b (linear)
∑
j

aj

(∏
k

ljk

)
. b (nonlinear)

where ai, aj and b are integer constants, lj , ljk are literals and . is a relational operator.

Definition 2. A cardinality constraint is a constraint on the number of literals which are
true among a given set of literals. The following cardinality constraints can be defined:
(1) atleast(k, {x1, x2, ..., xn}) is true if and only if at least k literals among x1, x2, ..., xn
are true. (2) atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals among
x1, x2, ..., xn are true. (3) exactly(k, {x1, x2, ..., xn}) is true if and only if exactly k literals
among x1, x2, ..., xn are true.

Cardinality constraints can be translated to pseudo-boolean constraints and viceversa. Clearly,
a cardinality constraint is a special kind of pseudo-Boolean constraint.

4 Benchmarking Conventions

In order to use the problem of optimal deployment of component-based applications (Section 2)
as a benchmark for OMT comparison, benchmarking principles need to be drawn. Their purpose
is to provide a comprehensive benchmarking environment that allows to generate reproducible
and comparable test results. However, developers of OMT intending to use the specified bench-
mark environment are advised to also give algorithmic details of their implementation.

8http://mathsat.fbk.eu
9νZ is the name of the optimization feature of the SMT solver Z3.

5

http://mathsat.fbk.eu


Constrained Optimization Benchmark Eraşcu and Meteş

The problem dimension can be scaled as follows: (1) The number ON of VM offers as avail-
able on the Cloud Providers site. In our experiments we used ON ∈ {4, 10, 20, 40, 60, 80, 100}.
(2) The number of components instances in constraints like deployment with bounded number
of instances and require-provides to be deployed. This number depends on the application
architect and the imposed application components requirements. (3) The number of hard-
ware/software constraints. Currently, we have used CPU, memory and storage, but depending
on the application architect and user requirements this list can be extended or restrained.

Moreover, the usage of different variable encodings should be taken into consideration.

4.1 Variable Encodings

The problem formulation (see Section 2) leads to the usage of either linear arithmetic, or non-
linear arithmetic (due to the constraints of type (2)). Based on the type of the variables from
Section 2, we used the encodings from Table 1:

Variable name Type

V P , HRt, vm
HRt , vmType Real Int BV Real Int

a Real Int BV Bool Bool

Table 1: Variables Encodings

Case 1: All variables have type Real (RealReal). This requires to add explicitly the
constraint that a can only take value 0/1, that is aik = 0 ∨ aik = 1, for all i = 1, N, k = 1,M .

Case 2: All variables have type Int. We further considered two subcases (i=1, N, k=1,M):
(1) aik = 0 ∨ aik = 1 (IntIntOr) (2) 0 ≤ aik ≤ 1 (IntIntLessThan).

Case 3: All variables are bitvectors (BV). The rationale behind using this encoding is that
integers can be expressed also as bitvectors. We used bitvectors of size 32. This particular
size was required to ensure that big integer numbers and arithmetic operations with them are
correctly represented, respectively, computed. In order to work with positive integers, we used
the unsigned versions of the relational operators.

Case 4: All variables are Real except a which is Bool. There exists many approaches for
variables encoding. For example, in order to encode the constraints of the type (10) we had to
bring the variables involved to compatible types. This is achieved by transforming a into type
Real using the if-the-else operator ite (RealBool).

Another approach is determined by the observation that in our formalization the constraints
(1)–(5), (8)–(9) are cardinality constraints, while (6)–(7), (10) are pseudo-boolean constraints.
However, due to (11)–(13) the problem can not be handled via MaxSMT solely; it containts
ON + (ON×M) +M constraints in which most of the variables must be of type Real. Hence,
the problem must be handled by a solver over QF LRA/QF NRA.

From personal communication with the OptiMathSAT team, we found out that OptiMath-
SAT does not support direct encoding of cardinality/pseudo-boolean constraints as introduced
in Definition 2. In νZ, the cardinality constraints can be directly encoded, however the pseudo-
boolean constraints (10) can not, since aik is Bool and HRi

t is Real. We came up with two
different approaches: (1) we used the ternary operator ite, transforming the type of a from
Bool to Real in order to have compatible types for the variables involved in the constraints
(RealPBC); (2) we used the equivalent transformation of (10) (RealPBCMultiObjectives):

¬aik ⇒ (aikH
res
i = 0) ∧ aik ⇒ (aikH

res
i = Hres

i ) ∧ minimize
N∑
i=1

aikH
res
i , (14)

where i = 1, N, k = 1,M.

6



Constrained Optimization Benchmark Eraşcu and Meteş

The new multi-objective optimization problem is handled by νZ, by default, using lexico-
graphic combinations, so it is important that the objective

∑M
k=1 VPk precedes (14).

Case 5: All variables are Int except a which is Bool. This case is similar to Case 4 and
was not considered in this paper because of lack of space.

4.2 Extending the Language of the SMT-LIB standard

The set of benchmarks proposed are aligned with the SMT-LIB standard [3], namely every
benchmark uses the command set-info to set the following attributes (1) :smt-lib-version

must be the first command in the benchmark), (2) :source, (3) :license, and (4) :category.
However, a slight modification was necessary, namely, instead of the attribute :status, we used
a new one, :minimum, which can be either a 〈numeral〉 or unknown, if the minimum could not
be found in a time frame of 40 minutes. This timeframe was chosen in order to be compliant
with the document SMT-COMP 2019 Rules draft. We do not consider, for now, benchmarks
when the optimization problem returns UNSAT.

The benchmarks are publicly available at [1]. We have split the benchmarks into linear
and non-linear, and in each case, we grouped them with respect to the background theory of
the constraints: QF LIA, QF LRA, QF BV, respectively QF NIA, QF NRA, QF BV. Each file in the
benchmark is named by concatenating: the application name, the number of VM offers, the
encoding name.

5 Algorithm assessment and comparison

This section is concerned with the evaluation of OMT solvers νZ and OptiMathSAT. The timing
results were obtained by taking the mean value time of 5 independent runs on use cases deriving
the general problem formulation from Section 2. The use-cases were described in detail in
[17, 10], here we mention, for each of them, their specific constraints: (1) Secure-Billing E-mail
Service: conflicts (2)/(3), equal bound (9); (2) Secure Web Container : conflicts (2)/(3), equal
and lower bound (9), full deployment (8), require provides (7); (3) Oryx2 : conflicts (2)/(3),
equal and lower bound (9), full deployment (8), require provides (6); (4) Wordpress: conflicts
(2)/(3), upper and lower bound (9), alternative components (5), require provides (6). As an
observation, Secure-Billing E-mail Service application involves application-specific constraints
with not massive arithmetic as those involving, for example, require-provides constraints.

The scalability of the OMT tools for the case studies above was studied from two perspec-
tives: number of VMs offers, respectively number of deployed components. For Secure Web
Container, Secure-Billing Email Service and Oryx2 applications, we considered up to 100 CPs
offers. Additionally, for the Wordpress application, we considered the number of instances of
Wordpress component to be deployed. For each application, we considered both formulations
(linear and non-linear) and for each formulation the encodings from Table 1, counting 7.

All tests in this paper were done on an MacBook Pro with the following configuration:
3.1 GHz dual-core Intel Core i5, Turbo Boost up to 3.5GHz. All timings are expressed in
seconds.

Remark 1. OptiMathSAT does not have support for nonlinear constraints. It is not clear
if νZ does, but the results for the minimum obtained in nonlinear case is the same as for the
linear one and we obtained no warning/error during running that nonlinearity is not supported.

Remark 2. OptiMathSAT does not have support for the RealPBC encoding using the non-
standard constructs like atmost, atleast, exactly, however they can be translated into

7



Constrained Optimization Benchmark Eraşcu and Meteş

assert-soft constraints. The automatic translation is work in progress.

For the lack of space, we do not list here all the timings, but we present an overview of the re-
sults. The timings can be consulted online at https://github.com/merascu/Dissemination/
tree/master/SMT2019.

OptiMathSAT runs faster, but not significantly, than νZ only in three cases: for the Secure-
Billing Email application, BV encoding, when the number of offers is 10 and 60 (see Table 2
and Figure 1).

#offers=4 #offers =10 #offers =20 #offers =40 #offers =60 #offers =80 #offers =100

νZ
Opti

MathSAT
νZ

Opti
MathSAT

νZ
Opti

MathSAT
νZ

Opti
MathSAT

νZ
Opti

MathSAT
νZ

Opti
MathSAT

νZ
Opti

MathSAT
0.86 0.98 1.7 1.56 1.34 2.23 1.76 3.27 4.99 3.85 2.34 3.67 3.06 3.3

Table 2: Secure-Billing Email (BV encoding)

Figure 1: Comparison between νZ and OptiMathSAT (linear formulation)

It is not the number of VMs offers, that is number of variables and constraints, which decides
the complexity of the problem, but rather the arithmetic of the constraints. For example,
both for νZ and OptiMathSAT the time does not increase with the number of offers (see e.g.
Table 2). We also observed, in case of νZ, that the timings at different runs can differ very much
especially for constraints involving massive arithmetic (see Table 3). We can not comment if
OptiMathSAT has simmilar behavior since it does not scale for such problems.

#offers=4 #offers=10 #offers=20 #offers=40
Run 1 49.55 128.54 45.23 983.39
Run 2 59.85 120.37 133.11 2368.54
Run 3 62.33 45.38 280.34 2484.58
Run 4 58.71 81.65 125.51 1790.21
Run 5 44.31 131.43 105.61 1955.71

Average 54.95 101.47 137.96 1916.48

Table 3: Wordpress application: 4 instances of Wordpress to be deployed. The timings are for
the RealPBC encoding. For more offers, the average timings is more than 40 minutes and are
not listed.

For the linear formulation, the RealPBC encoding gives always the best timings for the
applications Secure Web Container and Secure-Billing Email ; these applications do have com-
plicated arithmetic. Overall, this encoding scales the best (see Figure 2): it solves a problem
involving spprox. 500 variables of type Real and Bool, and around 3000 linear constraints of all

8

https://github.com/merascu/Dissemination/tree/master/SMT2019
https://github.com/merascu/Dissemination/tree/master/SMT2019


Constrained Optimization Benchmark Eraşcu and Meteş

Figure 2: Scalability of νZ for different linear encodings

Figure 3: Comparison between linear/non-linear formalizations for νZ

types enumerated in Section 2. Regarding the timings comparison between linear and nonlinear
formulations, the outcome is that the linear case runs best (see Figure 3).

The developmental stage of a Python implementation of the introduced benchmarking en-
vironment is made publicly available in a Github repository [1].

References

[1] OMT Benchmarks derived from Cloud Deployment of Component-based Applications. https:

//github.com/merascu/Optimization-Modulo-Theory/. Accessed: 2019-06-02.

[2] E. Ábrahám, F. Corzilius, E. B. Johnsen, G. Kremer, and J. Mauro. Zephyrus2: On the Fly
Deployment Optimization Using SMT and CP Technologies. In Dependable Software Engineer-
ing: Theories, Tools, and Applications - Second International Symposium, SETTA 2016, Beijing,
China, November 9-11, 2016, Proceedings, pages 229–245, 2016.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6. Technical report,
Department of Computer Science, The University of Iowa, 2017. Available at www.SMT-LIB.org.

[4] S. Bayless, N. Kodirov, I. Beschastnikh, H. H. Hoos, and A. J. Hu. Scalable Constraint-based
Virtual Data Center Allocation. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 546–554,
2017.

[5] N. Bjørner. SMT in Verification, Modeling, and Testing at Microsoft. In Proceedings of the 8th
International Conference on Hardware and Software: Verification and Testing, HVC’12, pages 3–3,
Berlin, Heidelberg, 2013. Springer-Verlag.

9

https://github.com/merascu/Optimization-Modulo-Theory/
https://github.com/merascu/Optimization-Modulo-Theory/


Constrained Optimization Benchmark Eraşcu and Meteş

[6] N. Bjørner, A. Phan, and L. Fleckenstein. νZ - An Optimizing SMT Solver. In Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS
2015, London, UK, April 11-18, 2015. Proceedings, pages 194–199, 2015.

[7] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warners. Radio Link Frequency Assignment.
Constraints, 4(1):79–89, Feb 1999.

[8] C. Chen, S. Yan, G. Zhao, B. Lee, and S. Singhal. A Systematic Framework Enabling Automatic
Conflict Detection and Explanation in Cloud Service Selection for Enterprises. In 2012 IEEE
Fifth International Conference on Cloud Computing, Honolulu, HI, USA, June 24-29, 2012, pages
883–890, 2012.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan and J. Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[10] M. Erascu, F. Micota, and D. Zaharie. Influence of Variables Encoding and Symmetry Breaking
on the Performance of Optimization Modulo Theories Tools Applied to Cloud Resource Selection.
In G. Barthe, K. Korovin, S. Schulz, M. Suda, G. Sutcliffe, and M. Veanes, editors, LPAR-22
Workshop and Short Paper Proceedings, volume 9 of Kalpa Publications in Computing, pages
1–14. EasyChair, 2018.

[11] J. Henry, M. Asavoae, D. Monniaux, and C. Mäıza. How to Compute Worst-case Execution Time
by Optimization Modulo Theory and a Clever Encoding of Program Semantics. In Proceedings
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems, LCTES ’14, pages 43–52, New York, NY, USA, 2014. ACM.

[12] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided Component-based Program Syn-
thesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 215–224, 2010.

[13] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An Efficient SMT
Solver for Verifying Deep Neural Networks. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, pages 97–117, 2017.

[14] G. Kovásznai, C. Biró, and B. Erdélyi. Puli – A Problem-Specific OMT Solver. In Proceedings
of the 16th International Workshop on Satisfiability Modulo Theories, affiliated with IJCAR 2018,
part of FLoC 2018, 2018.

[15] F. Leofante, E. Ábrahám, and A. Tacchella. Task Planning with OMT: An Application to Pro-
duction Logistics. In Integrated Formal Methods - 14th International Conference, IFM 2018,
Maynooth, Ireland, September 5-7, 2018, Proceedings, pages 316–325, 2018.

[16] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik. Symbolic Optimization with
SMT Solvers. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’14, San Diego, CA, USA, January 20-21, 2014, pages 607–618, 2014.

[17] F. Micota, M. Erascu, and D. Zaharie. Constraint Satisfaction Approaches in Cloud Resource
Selection for Component Based Applications. In 14th IEEE International Conference on Intelligent
Computer Communication and Processing, ICCP 2018, Cluj-Napoca, Romania, September 6-8,
2018, pages 443–450, 2018.

[18] A. Nadel and V. Ryvchin. Bit-Vector Optimization. In M. Chechik and J.-F. Raskin, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 851–867, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[19] R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization Modulo Theories. In
D. Kroening and C. S. Păsăreanu, editors, Computer Aided Verification, pages 447–454, Cham,
2015. Springer International Publishing.

[20] J. Vanegue and S. Heelan. SMT Solvers in Software Security. In 6th USENIX Workshop on
Offensive Technologies, WOOT’12, August 6-7, 2012, Bellevue, WA, USA, Proceedings, pages
85–96, 2012.

10


	Introduction
	Problem Description
	Satisfiability and Optimization Modulo Theories
	Benchmarking Conventions
	Variable Encodings
	Extending the Language of the SMT-LIB standard

	Algorithm assessment and comparison

