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Abstract

We discuss a multiparty resource allocation problem in a digital marketplace for pur-
chase and sale of compute resources. The problem exhibits several challenging character-
istics: (i) multiple agents and resources in a single matching instance, (ii) constraints that
can be imposed on individual resources or a combination of resources, and (iii) short wall
clock time for production settings. We model the problem as a satisfiability problem, and
discuss an implementation using the Z3 SMT solver.

1 Introduction

Marketplaces allow for the efficient allocation of resources and eventual discovery of prefer-
ences [15]. With cryptocurrencies, virtual marketplaces can be created where participants
broadcast their requests and offers for services. This transparency allows such marketplaces
to be analyzed. For instance, because the information about requests and offers is universally
visible, optimal matching and price computation is possible in the marketplace (for a given
definition of optimality).

In this paper, we consider the Coronai cryptocurrency network [5] where computational
services can be offered and requested through a virtual marketplace. For example, a partic-
ipant in this network can offer a natural language processing (NLP) service that implements
named-entity-recognition (a popular NLP application) and request part-of-speech (results
from a Part-Of-Speech tagger, a common NLP pipeline), together comprising a Commitment.
A commitment may be fulfilled in its entirety or not at all. Bid prices (or asks) can also be
specified for the service requests and offers.

A given matching of offers and requests on this market is termed a Schedule here onwards.
A valid Schedule must (i) respect the commitments (expressed using a query language discussed
later) and (ii) respect the bid and maximum ask constraints imposed. A scheduler monitors the
marketplace for broadcast commitments and generates a valid schedule. The scheduler must
operate in real-time to ensure that the marketplace is not stalled.

This paper presents a formulation of this multiparty economic scheduling problem as a
satisfiability problem. We have successfully deployed a scheduler that used this formulation;
the constraints were solved using the Z3 SMT solver [19]. The scheduler has a very low wall-
clock time and scales well to a very large number of participants. The tools and data for the
experimental evaluation can be found at: https://github.com/onai/SMTexperiments.

The rest of the paper is organized as follows: Section 2 describes the constraints defining the
multiparty economic scheduling problem; Section 3 outlines the encoding of these constraints
in the SMT solver; Section 4 presents the experimental evaluation; Section 5 describes related
work; and Section 6 concludes.


https://github.com/onai/SMTexperiments
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2 Multiparty Economic Constraints

This section describes the various type of constraints in the multiparty economic scheduling
problem.

2.1 Resource-level Constraints

An individual resource on the marketplace is called a ServiceCall. A participant can either
offer or request a particular ServiceCall. An example of a service is named-entity-recognition.

Each participant puts forth a Commitment. A Commitment is a combination of offers and
requests of ServiceCalls. For example, a participant can put forth a Commitment that offers
the service named-entity-recognition, denoted as ner, represented as: {ner : offer}.

A participant can also put forth a Commitment that offers ner and requests part-of-speech
(another service, henceforth denoted as pos), represented as: {ner : offer, pos : request}.

The marketplace also provides two quantifiers, OneOf and AIIOf. A commitment specified
as OneOf({ner-a : request} , {ner-b : request}) indicates two distinct ServiceCalls, ner-a, and
ner-b. The participant is requesting ezactly one of these two requests to be satisfied. Simi-
larly a commitment specified as AllOf({ner-a : request} , {mm-b : request}) indicates that the
participant wants all of these requests to be satisfied.

OneOf and AllOf are composable operators. For example, a commitment

OneOf( AllOf ({ner-a : request} ,{ner-b : request}),
AllOf ({ner-c : request} , {ner-d : request}))

indicates that exactly one of the two AllOfs be satisfied.

It is trivial to show that all combinations of OneOf and AllOf can be re-written as
OneOf (AllOf (service-call-a, service-call-b), ..., AllOf(...)); i.e., a OneOf of a collection of
AllOfs and each AllOf contains individual ServiceCall requests or offers. The proof for this
follows from boolean arithmetic. Here onwards, we will only present Commitments in the
format OneOf(AlIOf(...), AlOf(...), AllOf(...)); i.e., a Commitment is one of several AllOfs
and each AllOf contains individual ServiceCall requests and offers.

2.2 Price Constraints

A schedule must also decide on a price for each ServiceCall. These prices are decided based
on participant-specified bid and ask prices. Participants can specify a ceiling or a floor on
each ANlOf. A ceiling specifies that the cumulative payment made for requests and cumulative
income from offers is below that value. The floor is analogous to the ceiling.

Consider the following AIlOf constraint:

{ANOf ({service-call-a : offer} ,{service-call-b : request}), ceiling : 20}

If this particular AllOf is scheduled, the associated ceiling requires that price(service-call-id-b)—
price(service-call-id-a) < 20, where price(x) is the chosen price of ServiceCall x. The price
for each ServiceCall is picked by the scheduler and is part of the Schedule.

2.3 Uniqueness Constraints

The one additional constraint is that in a schedule, only one participant should be allowed to
offer a particular ServiceCall. This constraint avoids duplicated work on the marketplace.
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2.4 Schedule

The commitments for all participants in the marketplace form a set of constraints. A schedule
is a collection of commitments such that exactly one of the AllOfs in each commitment’s OneOf
honors all the aforementioned constraints. Thus, the scheduler picks a set of Commitments to
schedule and chooses one AllOf per commitment and decides on a price for all the ServiceCalls
to honor the pricing constraints on the chosen AllOfs.
An example of a valid schedule is:

Commitment 0: {AllOf(sc-a : request, sc-b : offer,), ceiling : 20}

Commitment 1: {AllOf(sc-a : offer,), floor : 10}

Commitment 2:  {AllOf(sc-b : request, ), ceiling : 10}

price(sc-a) : 10

price(sc-b) : 10

3 SMT-based Scheduler

In this section, we describe how the multiparty economic constraints are encoded and solved
by an SMT solver, such as Z3. We use the following notation:

e C is the set of Commitments, and A; is the set of AllOfs in Commitment i.
e R is the set of ServiceCalls that are requests.

O is the set of ServiceCalls that are offers.

o Cost(A; ;) is the cost ceiling or floor (based on the sign) of AlOf j in Commitment i.
o Price(k) is the price of the ServiceCall k.

o S; is the set of ServiceCalls in ANIOf 3.

o R and Oy are the sets of requests and offers for ServiceCall k, respectively.

e (; is a boolean variable that indicates if a particular commitment is being scheduled.
e A;; is a boolean variable that indicates if AllOf j in Commitment ¢ is scheduled.

e S; (k) is a boolean variable that indicates if ServiceCall with id k in Commitment ¢
and AllOf j is scheduled.

Using the above notation, the set of Commitments can be expressed using SMT constraints
as follows:

e For each commitment, exactly one of the AllOfs must be scheduled. This constraint is
expressed using a pseudo-boolean clause. In Z3 parlance, a pseudo-boolean allows regular
arithmetic over boolean values (treating a true value as 1 and a false value as 0): for each

iGC, Ci:>Zin,j:1‘

e If a Commitment is not scheduled, then its constituent AllOf should not be scheduled:
for each 1 € C, ~C; = Zj A; ;i =0.
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Scheduling an AllOf implies the constituent ServiceCalls need to be scheduled as well:
foreach i € C,j € A;, Ai; = N\, Si (k).

If an AIIOf is not scheduled, the constituent SerwviceCalls should not be scheduled as
well: for each i € C,j € A;, —A;; = >, Si (k) =0.

If a request has been scheduled, exactly one offer must be scheduled for it: for each k,
R(k) = >, O(k) =1.

If a service call is being offered, then at least one request must exist for it: for each k,

O(k) = S, R(k) > 1.

The schedule must be non-trivial and at least one Commitment must be scheduled: for
eachicC, >, C; > 1.

The integer-valued price variables for each ServiceCall must satisfy the pricing constraints
on each AIOf: (), s, is-offer(k,S;) - price(k)) < ceiling(k), where is-offer(k,S;) is
—1 if AlIOf 7 is a request for ServiceCall k, and 1 if AllOf i is an offer for ServiceCall k.

We use the optimization facility of Z3 [11] to optimize the total number of commitments
scheduled: max ), C;. Note that this commitment makes the third constraint (at least
one commitment must be scheduled) redundant. However, we keep both constraints since
the optimization objective can vary based on needs.

Experimental Evaluation

In this section, we present an empirical evaluation of the SMT-based scheduler and compare it
to a prior baseline approach; the data to reproduce this evaluation can be found at: https:
//github.com/onai/SMTexperiments. In our model, the following values govern the number
of variables in the resulting SMT problem:

e the number of ServiceCalls in a single AlOf,
e the number of AllOfs in each Commitment,
e the overall number of Commitments to be scheduled, and

e the total number of ServiceCalls overall that need to be priced.

We present results using a synthetic dataset that vary each of these counts to produce

different configurations of the problem. Specifically, we sample these values from possible
maximum counts and synthesize 10 problems per configuration. We use the following definitions:

e C40: the maximum number of ServiceCalls in a single AlOf.
e (C¢: the maximum number of AllOfs in a single Commitment.
e N¢: the total number of Commitments to be scheduled.

e Ngco: the total number of ServiceCalls that need to be priced.


https://github.com/onai/SMTexperiments
https://github.com/onai/SMTexperiments
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OAO CC NC NSC Time (secs.)

10 10 10 10 0.03
50 10 10 10 0.08
100 10 10 10 0.20
100 10 100 10 2.02
100 10 1000 10 26.76
50 10 100 100  1.29
100 10 100 100  1.98
100 10 1000 100  22.18
50 100 100 1000 1.27
100 100 100 100 2241
100 100 1000 1000 257.60

Table 1: Performance of the SMT-based scheduler. The leftmost four columns shows the
settings for the various parameters, and the rightmost column shows the wall-clock time for
execution. The total number of variables in the shown configurations ranges from a few dozen
to a few million.

A synthetic dataset is generated using the following procedure:

input : CAO7CC'3NC7NSC
output: A set of random Commitments
for ¢+ 0 to N¢ do
Nailof ~ Uniform(0, Cc)
for ng < 0 to ngor do
Nsean ~ Uniform(0,Cyo)
for ng <+ 0 to Ny do
I(request) ~ Bernoulli(p)
L s ~ Uniform(0, Ns¢)

Each dataset contains a total of No Commitments, each of which contains a maximum of
Cao AllOfs. Each of those AllOfs contains a maximum of C4o ServiceCalls. Each of these
ServiceCalls is picked from an existing set of ServiceCalls of size Ng¢. In addition, we sample
the ceilings and floors on the prices from a maximum of 200. The value of p (the parameter for
the Bernoulli distribution is set to 0.5).

Platform All experiments were run on a Macbook Pro with an Intel(R) Core(TM) i7-5557U
CPU @ 3.10GHz with 4 cores. The Z3 model was implemented in the Rust programming
language [7] using existing libraries to interface with Z3[9].

Table 1 reports the runtime of the SMT-based scheduler for a variety of configurations, and
shows that the implementation is performant across a variety of settings. The total number of
variables in the shown configurations ranges from a few dozen to a few million.

4.1 Baseline

We now present results using an alternate approach, which was the initial approach used before
switching to the SMT-based scheduler described above. For this baseline, we drop the pricing
constraints. The pricing constraints were solved using an LP solver with fixed semantics.
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CAO CC NC NSC Time (secs.)

10 10 10 10 5.04
a0 10 10 10 4.93
100 10 10 10 6.51
100 10 100 10 4.83

Table 2: Performance of the hardware-accelerated baseline. The leftmost four columns contain
configuration values, and the rightmost contains the wallclock time. This baseline encoding
takes substantially longer to get to a result while solving only a subset of the overall scheduling
problem.

The baseline approach represents each AllOf as a bit-vector of size 2- Ngo + N¢. The entries
in the bit vector are set using the following scheme:

o If the current AllOf contains ServiceCall ¢ (i being the index of the call) and is offering
this ServiceCall, then the bit indexed by 2 - ¢ is set to 1.

e If the current AllOf contains ServiceCall i (i being the index of the call) and is requesting
this ServiceCall, then the bit indexed by 2 -7 + 1 is set to 1.

o If the current ANOf is part of Commitment ¢, (¢ being the index of the commitment)
then the bit indexed by (2 * Ng¢) + ¢ is set to 1.

This encoding captures all the ServiceCalls that are being offered and requested within
an AlOf, and the Commitment index ¢ captures which OneOf (and thus Commitment) this
AllOf is a part of. The encoding captures all information necessary to describe an AlIOf. The
scheduling task then is to pick which AllOfs need to be scheduled.

A valid schedule in this setting has the same shape as the bit-vector for an individual AllOf.
The algorithm to find a schedule starts by initializing a bit-vector of appropriate length to
zero, which represents the trivial schedule in which nothing is scheduled. For each AlIOf to be
scheduled, a new potential schedule is created by adding the relevant AllOf’s bit vector to the
initial schedule. Thus at this stage, there are as many potential schedules as there are AllOfs
(say Nayoy). Each of these potential schedules are then further updated by adding yet another
AlIOf one at a time (resulting in N?4;0¢) potential schedules, and so on. Thus, the addition
operation is a potential schedule update where another AllOf is possibly scheduled.

In the encoding for a potential schedule, the counts in the vector (which is no longer a
bit-vector but an integer-valued vector) reflect the number of requests and number of offers
(depending on their position), and the number of times a Commitment is scheduled. Thus, we
can trivially eliminate invalid some potential schedules. Ones that offer a ServiceCall more
than once, for example, are eliminated by the procedure FilterDoubleOffer, which is run each
time the set of potential schedules is updated.

At each stage, a pruning step cuts down the total number of potential schedules to a rea-
sonable number (using an appropriate heuristic such as random selection). At the end of the
iterations, a final procedure deletes all invalid schedules (using the rules mentioned in Sec-
tion 3). The set of hypothetical schedules maintained at every stage is denoted as P. This

6
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baseline algorithm is stated as:

input : A: set of AllOfs in the correct encoding
output: P: final set of hypothetical Schedules
_>
P+ {0}
for i < 0 to NAllOf do
for p e P do
| forae Ado P+ PU{p+a}

FilterDoubleOffer(P)
FilterInvalid(P)

The final schedule is retrieved by keeping track of the path used to arrive at the resulting
schedule; i.e., which AlIOf was added at what stage. This is achieved by simple backtracking.

Platform The experiments for the baseline were run on a NVidia Tesla K40c graphic card.
The baseline was implemented in Rust using the arrayfire library [1].

Table 2 presents results for a hardware accelerated implementation (targeting GPUs) of the
above baseline algorithm with backtracking. Due to the nature of hardware accelerated code,
a solution must pre-allocate memory for the encoding. We set the value of Ng¢o to 10, Nao to
100, N¢ to 100, and the size of P to 100 (the biggest problem size possible). As we can see in
Table 2, the baseline encoding is not efficient and the Z3 solution can solve substantially bigger
problems in size. We report results for only a subset of problems (that can fit in the chosen
sizes). The implementation also suffers from having to copy a large amount of data (all of P)
to and from the GPU after each stage. In addition, this encoding does not include any pricing
information and this would need to be computed later on for a given Schedule (and possibly a
new Schedule needs to be discovered).

4.2 Varying Demand And Supply

Typical marketplaces include varying demand and supply levels. We test two additional con-
figurations - abundance and scarcity. In the case of abundance, there is a surplus of offers
compared to requests, and similarly in a scarcity setting there are not enough offers to satisfy
requests. We synthesize two additional test benches where (i) the number of requests on offer
are only 25% of the number of offers (the abundance setting), and (ii) the number of offers are
25% of the requests in the system. This is achieved by setting the value of p in the sampling
algorithm above to 0.25 and 0.75, respectively.

Table 3 shows the results of this experiment on a subset of the original configurations. We
note that the abundance setting seems to take significantly longer than the scarcity setting.
One possible reason can be that in a scarcity setting, the pool of possible solutions is smaller
(and thus less work for the solver).

5 Related Work

A traditional setting for job scheduling is computer clusters. Jobs or tasks are scheduled onto
available cores by a scheduler. Popular grid scheduling tools are the Univa grid engine [8],
Open grid scheduler [6], and HTCondor [3]. The request-offer model in these systems in not
as rich as the marketplace discussed in this paper. The resources are supplied by the manager
of the grid and the scheduling algorithms are some variant of a greedy scheduler. Beyond
simple constraints like duration and priority (both of which can be easily implemented in a

7
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Abundance Setting Scarcity Setting

OAO CC NC NSC Time (secs.) Time (SGCS.)
10 10 10 10 0.1 0.18

50 10 10 10 0.51 0.51

100 10 10 10 0.83 0.4448

100 10 100 10 12.47 5.904

100 10 1000 10 87.2815 47.0092

Table 3: Performance of the SMT-based scheduler in abundance and scarcity settings. The
leftmost four columns show the settings for the various parameters, the fifth and sixth columns
show the wall-clock time for execution.

greedy setting), these schedulers work with a less complex model of tasks and do not have
any constraints like pricing and quantifiers to deal with. A grid network like the systems
above is also a subset of the marketplace discussed in this paper (since a grid service can be
a computational service offered in the marketplace). Job-schedulers are also a core component
of modern container orchestration systems such as Kubernetes [4] and Docker swarm [2]. Both
these systems use a greedy scheduling strategy. SMT solvers, such as Z3 [19], have been used
to solve network configuration problems [18, 14, 17], and scheduling problems [10, 12, 13, 16].

6 Conclusion

This paper describes an SMT-based solution to a multiparty economic scheduling problem
occurring in a digital marketplace such as with the Coronai network [5]. We demonstrate the
effectiveness of our SMT-based scheduler using a variety synthetic benchmarks, and contrast it
with a baseline that uses the hardware-accelerated arrayfire library to solve a relaxed version
of the problem.
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