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Abstract

Intrepid is an SMT-based model checking library. It provides a rich API for construct-
ing, simulating, and verify circuits. Verification of safety properties is performed in a
bit-precise manner, including operations involving integers and doubles. The incremental
multi-property engines are suitable for automated test generation tasks, such as MC/DC
test generation. Intrepid can parse Lustre specifications, and a subset of IEC-61131 ST lan-
guage: by using the PLC language kit provided by Mathworks, we show that also Simulink
and Stateflow languages can be processed by Intrepid.

1 Introduction
Formal methods have been successfully employed in Control Engineering (avionics, automotive,
train controllers) for decades. Property verification, requirement analysis, and test generation
have been partially or fully automated with theorem provers and model checkers, where the
latter approach is often referred to as the one with the higher degree of automation and precision
in reporting counterexamples.

On the other hand Industrial Automation is a domain where formal methods never really
took off: this is unfortunate since Programmable Logic Computers (PLCs) are at the heart of
modern industrial plants such as dams, and nuclear power plants. There is no need to highlight
the importance of the correctness of programs that control such installations, considering also
the growing demand of automation of the industry 4.0.

Intrepid is a model checking library that has been conceived to facilitate the application of
formal methods in control engineering and industrial automation applications by providing (i)
a rich C and python API that allows for a higher degree of interaction between the engineer
and model checking algorithms in a rapid prototyping environment, and (ii) the ability to
parse widely used languages in industry such as Lustre, Simulink/Stateflow, and a subset of
IEC-61131-3 ST language for PLCs.

Intrepid relies on the powerful SMT-solver Z3 [23] for solving satisfiability queries and for
performing quantifier elimination.

1.1 Availability

The easiest way to use Intrepid is via it’s Python API. It can be installed using Python’s
pip utility, by issuing the command pip install intrepyd. The source code is available at
https://github.com/formalmethods for both the core library written in C++ (repository
intrepid [15]), and the Python API (repository intrepyd [17]). The code is released under
the liberal BSD-3 license.

https://github.com/formalmethods
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1.2 Related Work
Kind2 [6], Luke [21], nuXmv [5], and MCMT [11] are four other SMT-based model checkers.

Kind2 and Luke read Lustre specifications, and they implement a temporal induction engine
to solve proof objectives. Kind2 includes several enhancements over the basic algorithms, such
as invariant generation. Differently from Intrepid and Luke, Kind2 interprets integers and reals
in the classical mathematical domain, not as machine-precise entities. Also, Luke does not offer
support for reals. Kind2 and Luke are the most similar tool to ours. Notice also that Lustre and
Simulink models have very closely related semantics: Lustre is often used as an intermediate
language for processing Simulink.

nuXmv can read SMV models extended with keywords that allow for the specification of
infinite-state systems. It implements a rich portfolio of reachability as well as LTL algorithms,
some of which are inherited from NuSMV and specialized for purely Boolean reasoning. Lustre
and Simulink models can be translated into SMV models, but we are not aware of a publicly
available tool that performs such translation.

MCMT was conceived to reason about array-based systems, an expressive class of infinite
state systems that allows encoding of protocols. Intrepid’s backward reachability engine is,
conceptually, inspired to that of MCMT, and it is extended to handle free inputs (MCMT
operates on closed systems instead).

Formal Specs Verifier (FSV) [4] is a proprietary tool developed at ALES/UTRC that can
verify Simulink designs by means of a translation into nuXmv. In contrast to ours, their
Simulink translator is based on the MatLab APIs, and thus it requires interaction with MatLab.
FSV-ATG [9] is an extension of FSV for Automatic Test Generation. Our approach to ATG
presented in Section 4 is inspired to the same algorithm. In contrast, our approach is not based
on repeated and monolithic calls to the backend (nuXmv again), but leverages the richer API
provided by Intrepid.

CocoSim [8] (and its successor CocoSim2) is a tool that integrates with Mathworks Matlab
and provides utilities for verification and code generation for Simulink/Stateflow designs. Our
approach to the Simulink verification differs in that Intrepid does not require an active execution
of Matlab once a circuit has been dumped. At the same time Intrepid could be potentially used
as a backend for CocoSim.

Simulink Design Verifier (SLDV) [22] is the proprietary model checker that comes as part of
the MatLab-Simulink suite. SLDV has the capability of solving reachability queries and perform
test case generation on Simulink and Stateflow models. Unfortunately only little information
is publicy available about the internals of the tool.

2 Preliminaries
2.1 Basic definitions
In the following we shall use the term circuit to refer to a connected directed graph where nodes
are elements called nets. A net can be either an input, an output, a gate, or a latch. Inputs are
nets that have no incoming connections, outputs are nets that have no outgoing connections,
gates are combinational elements such as logical gates, adders, etc., and latches are sequential
elements with one incoming and one outgoing connection (simple memory units, also known as
delays). Combinational loops are not allowed, i.e., every loop in a circuit must contain at least
a latch.

The circuit is typed: every input must be associated with a type, and gates can be applied
only between nets that are compatible with their signature. The type of a latch is the same of
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the net in its incoming connection. In this way all the nets of a circuit have a well defined type.

2.2 Intrepid’s Anatomy

Figure 1: Intrepid’s software modules ar-
chitecture.

Figure 1 depicts a schematic view of Intrepid’s
software modules. The upper part constitutes
the core of the system, the model-checking library
(intrepid.dll) that exposes a C-API, easily wrap-
pable by basically any other programming lan-
guage. The library is written in C++ for perfor-
mance reasons. At the heart of the library lies the
integration with Z3 SMT-solver (z3.dll), which is
used by Intrepid to solve combinational proof obli-
gations incrementally, and to perform quantifier
elimination when necessary.

Intrepyd is a Python wrapper for the C-API
provided by Intrepid. It extends the API by intro-
ducing an Object-Oriented layer that hides most
low-level details and that allows a seamless and
interactive programming experience with the tool.
The low-level C-to-Python wrapper is automati-
cally generated by the SWIG framework.

Intrepid compiles and has been tested on Win-
dows, macOS, and Linux.

2.3 Problem specification and verification
Intrepyd is the main entry-point for problem specification and property verification. In other
words, Intrepid’s low-level input language is simply python: the circuit is constructed with the
creational APIs and the interface of the circuit with the external world is defined by choosing
which nets are inputs and ouputs. In this process native python functions can be used to
declare sub-circuits that might need to be constructed multiple times with different parameters;
programming constructs such as ”for” loops can be used to automate the circuit creation process.

Intrepid supports the following data types: Booleans, signed and unsigned integers of size
8, 16, 32, and 64 bits, single and double precision floating point numbers, and reals (as an
approximation for single and double precision floating-point numbers). These supported types
are common in control engineering applications and are the basic types of dataflow languages
such as Simulink, Lustre, and the industrial automation languages defined in the IEC-61131-3
standard for Programmable Logic Computers [14].

Intrepid provides a simulation engine and two verification engines for performing bit-precise
safety model-checking of a circuit. It is possible to specify which nets are to be tracked during
simulation, and which are to be used as reachability targets by means of the provided API
(some examples can be found in the intrepyd repository under directory examples).

2.4 An example
Figure 2 and Figure 3 show the definition of a counter using Intrepid’s python API. The counter
is instantiated with a limit of 10, and it is then simulated over twelve time frames. The output
of the simulation is reported in Figure 4.
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import intrepyd as ip
import intrepyd.trace

ctx = ip.Context()
int8type = ctx.mk_int8_type()
ten = ctx.mk_number("10", int8type)
counter, Q = mk_counter(ctx, "counter", type=int8type, limit=ten)
simulator = ctx.mk_simulator()
tr.mk_trace()
simulator.add_watch(counter)
simulator.add_watch(Q)
simulator.simulate(tr, 12)
df = tr.get_as_dataframe(ctx.net2name)
print df

Figure 2: Simulation of the output values of a counter for twelve time frames.

def mk_counter(context, name, type, limit, init=None, increment=None, enable=None, reset=None):
"""
Counts from init to limit by increment. When limit
is reached, (limit, true) is outputted. Enable,
reset, and custom increment might be specified.
"""
if init == None:

init = context.mk_number("0", type)
if increment == None:

increment = context.mk_number("1", type)
if enable == None:

enable = context.mk_true()
if reset == None:

reset = context.mk_false()

counter = context.mk_latch(name, type)
notQ = context.mk_lt(counter, limit)
next = context.mk_ite(reset,\

init,\
context.mk_ite(context.mk_and(enable, notQ),\

context.mk_add(counter, increment),\
counter))

context.set_latch_init_next(counter, init, next)
Q = context.mk_not(notQ, name + ’.Q’)
return counter, Q

Figure 3: Definition of function mk counter, that implements a sub-circuit counting from zero
to a specified limit.
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0 1 2 3 4 5 6 7 8 9 10 11 12
counter 0 1 2 3 4 5 6 7 8 9 10 10 10
counter.Q F F F F F F F F F F T T T

Figure 4: The output of the simulation.

3 Engines
3.1 Simulation
Intrepid provides a simulation engine that allows for a quick inspection of the behavior of the
circuit by computing the values for the outputs at each time step. This feature is particularly
useful for closed systems (circuits with no inputs, or where inputs have been connected with
some stub logic); otherwise primary inputs are given default values (0 for numeric types, false
for Booleans). The simulator may also be used to re-simulate a counterexample obtained with
the model checking engines (in any case, internally the simulator is automatically triggered for
validating any newly produced counterexamples).

3.2 Model Checking
Intrepid provides two model checking engines, a Bounded Model Checker (BMC) engine and a
Backward Reachability (BR) engine. Both engines are reachability-based, i.e., they can produce
a counterexample showing that a Boolean signal (target) can evaluate to “true”. BR can also
show that no counterexample can be produced (target is unreachable). Both BMC and BR
are multi-target engines, i.e., they can perform reachability for multiple targets at once, thus
reducing the overall computational effort compared to a batch of single-target reachability calls.
In particular, the engines pause when the first counterexample is found for at least one target,
and it may be resumed to reach the remaining ones, without having to reset the engine. This
feature is of great use for Automatic Test Generation.

BMC is implemented as a classical unroll-and-solve procedure. A noteworthy feature of In-
trepid’s BMC engine is the ability to perform an “optimizing” reachability, i.e., it can be used to
produce the counterexample that satisfies the highest numbers of targets at once (for a given
depth). The optimization feature relies on the powerful and flexible algorithms provided by
Z3 [1].

BR is an adaption of the exploration algorithm behind the MCMT tool [11], extended to
handle input signals. The procedure is complete (can prove a target to be unreachable), and
it takes care of eliminating non-Boolean inputs in proof obligations by means of quantifier
elimination.

Both BMC and BR may be used to solve circuits containing non-linear real arithmetic poly-
nomials, since Z3 supports solving and quantifier elimination for that fragment, a rare feature
that only a handful of model checkers can display at the time of writing this paper1.

1Notice that Mathwork’s proprietary model checker Simulink Design Verifier [22] cannot handle non-linear
arithmetic at the time of writing this paper.
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4 A Sample Application: Automated Test Generation of
MC/DC

The avionics standard DO-178C [24] dictates that every Level-A control software must be
fully covered by a test suite using the Modified Condition/Decision (MC/DC) coverage metric.
Being able to compute such test suites with automatic means is of paramount importance for
the avionics industry.

A test suite satisfies the MC/DC coverage criterion for a decision in a circuit iff each con-
dition can be shown to independently affect the outcome of the output (see [7] for the precise
definitions of decision, condition, MC/DC). Encoding of MC/DC conditions as Boolean/SMT
formulas is a well-studied topic: the interested reader may refer to [2] for a recent elegant logical
formulation of the problem.

Intrepid implements a simple ATG algorithm on top of the basic API using only 200 LOC
of python, including comments. The algorithm roughly follows the approach of [9] for deriving
test cases from model checking counterexamples, but, in addition, it also detects unreachable
test objectives (by calling the BR for individual test objectives as a preprocessing step). The
algorithm is based on repeated calls to the BMC engine; the optimization feature is used to
generate a minimal number of counterexamples (and therefore tests) by maximizing the number
of solved targets at each engine invocation.

5 Frontends
In order to broaden the appliacability of Intrepid we have written two translators from com-
monly used languages in control engineering and industrial automation into the Intrepid’s API:
a translator for Lustre [12], and one for IEC-61131-3 Structured Text language [14] (ST from
now on).

In both cases the encoding is bit-precise, i.e., there is no abstraction of finite integers or
floating-point values into mathematical integers and reals as other model-checkers do: we argue
that this choice is the most suitable for a prover that needs to be employed in safety-critical
verification tasks, as there must be no room for false positive or false negative results.

Our translator for ST is only partial, and it focuses on a subset of the language ST0 that
is rich enough to express state-machines. Iteration statements for example are not part of the
subset we can deal with.

Most importantly, the ST0 subset is sufficient to capture Mathworks’ Simulink and Stateflow
dataflow languages: Mathworks provides a so called ”PLC Toolkit” which can be used to
translate Simulink/Stateflow circuits into Structured Text (as well as other PLC languages,
such as Ladder Logic). The translation comes with a rich set of comments that allow a complete
and precise backtrace from the translated model to the original. Therefore, indirectly, Intrepid
is able to handle also Simulink/Stateflow.

Originally we started to translate Simulink directly, by building on top of existing Java
parsers. However soon we realized that there are many advantages of using a translation from
ST rather than a native one from Simulink/Stateflow. First of all ST is a textual language, and
it is easy to check if being parsed and translated correctly compared to a graphical language,
whose textual representation is harder to read. Second, as far as we know there is no official
and complete document provided by Mathworks that explains the details all the Stateflow
constructs. The work of [3] gives a deep insight on the semantic of Stateflow, and we have no
reason to believe it is incorrect. However it has been validated with simulation rather than
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examples/atg_2$ python atg_generation.py
There are 6 test objectives:
- 0 unreachable test objectives
- 6 reachable test objectives

Generated tests:
In1 In2 In3 In4 In5 In6 circuit/Out

0 false false true false true true true
1 true false true false true true false
3 false true true false true true false
4 false true false false true true true
7 true false false true true true false
9 true false true false false true true
11 true false true false true false true

Figure 5: An example of an execution of Automated Test Generation on a simple combinational
circuit taken from [13]. Each row of the table is an assigment to the inputs representing a test.
Pair of tests show the satisfaction of the MC/DC coverage criterion for a specific input. For
example (0, 1) is a pair of tests ids that shows MC/DC for “In1” (a so-called independence
pair). The test generation takes about 1 second.

being build on top of a formal specification. ST specification instead is public, well understood,
and easy to implement.

6 Preliminary Experiments

6.1 Lustre

In this section we report on some experiments conducted on the benchmark suite of the Kind2
tool, available at [18]. The suite contains around 900 designs with only one output, representing
a property, or equivalently, the negation of a target. Some targets are reachable (design is
Invalid) some other are not (design is Valid).

Instead of reporting raw execution times for Intrepid on the benchmarks, we report a com-
parison with existing tools.
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Comparison agains Kind2
We do not compare against Kind2, because of the different semantics it implements (abstraction
of fixed-width integers into mathematical integers in Z). Would it make sense to compare
anyways ? We believe it would not. Take for instance a circuit representing a counter: in
integer arithmetic in Z one can always deduce that the value of the counter increases at each
time step. This is an extremely powerful invariant that, added as assumption to the verification
algorithm can be used to certain proofs immediately. However, in the machine-precise semantics,
the invariant is not true, because the counter will eventually overflow. Many benchmarks in the
Kind2 suite contain counters that could be optimized away with the invariant when assuming
the integers in Z.

Comparison against Luke
Luke is a model checker based on SAT and Temporal Induction that was created, to the best
of our knowledge, with the main intent of being an educational tool. Yet Luke is extremely
robust, lightweight, and it is the only tool we could find that interprets Lustre with the correct
machine-precise semantics. The comparison against Luke is on the designs containing Boolean
and Integer types, because these are the only ones that are supported by Luke (i.e., reals are not
supported). We have run Intrepid and Luke with a timeout of 300 seconds per each benchmark.
Intrepid is run with BMC and BR algorithms in parallel, while Luke is run with BMC and TI
(experiments can be reproduced by means of the scripts available at [16]).

Invalid benchmarks [19] Valid benchmarks [20]

Figure 6: Comparison of Intrepid and Luke on invalid and valid benchmarks

The comparison over the invalid benchmarks is very similar between Intrepid and Luke,
with Intrepid being slightly faster on solved instances. This is basically a comparison of two
different implementation of a BMC algorithm.

The comparison over the valid benchmarks is more interesting because it is comparing an
engine based on Temporal Induction (TI) with our own based on BR. We notice that BR is
generally slower on small benchmarks, but overall it can solve more designs than TI. We believe
that BR can solve those designs that are not provably inductive by TI. This suggests that TI
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and BR are complementary teqniques.
Overall Intrepid can solve more instances than Luke, as reported by the cumulative plot in

Figure 6.1.

Intrepid vs Luke on all benchmarks 2

Figure 7: Comparison of Intrepid and Luke summarized.

The benchmark suite contains also 48 designs that use the real data-type (large/ccp*.lus
and cruise controller*.lus). According to the companion description, these benchmarks
come from Rockwell-Collins designs. Because Luke does not support the real type, we could
not run it. Intrepid instead can process the designs by interpreting reals with single precision
floating-point arithmetic. The designs are either very easy or very hard to solve for Intrepid:
out of 48 designs only 10 can be proven valid in about 15 seconds overall.

6.2 Simulink/Stateflow via ST
In order to demonstrate the applicability of our translation approach for Simulink/Stateflow we
have translated a benchmark from the CocoSim benchmark suite, namely GPCA Alarm, which
implements a part of an medical infusion pump mechanism. We have first translated the design
in ST using Matlab’s PLC toolkit, and then we have used Intrepid’s ST frontend to translate
the design into an equivalent in python. The design contains 8 properties, and Intrepyd can
prove 4 of them to be invalid in about 50 seconds. 14 of which are taken for parsing (on an
Intel Core with 4 GB of RAM).

7 Conclusion
Intrepid is a model-checker for Control Engineering and Industrial Automation with a bit-precise
interpretation of the design, making it suitable for safety-critical verification tasks. Intrepid
can be downloaded and intalled via the python utility pip by issuing pip install intrepyd.
Our preliminary experiments show that Intrepid can be applied for the verification of Lustre,
a subset of Structured Text and Simulink/Stateflow designs.
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8 Notes
Some of the content of this paper first appeared online in form of blog posts at [10].
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